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In this paper, an efficient and accurate spectral numerical method is presented for solving
second-, fourth-order fractional diffusion-wave equations and fractional wave equations
with damping. The proposed method is based on Jacobi tau spectral procedure together
with the Jacobi operational matrix for fractional integrals, described in the Riemann–
Liouville sense. The main characteristic behind this approach is to reduce such problems
to those of solving systems of algebraic equations in the unknown expansion coefficients
of the sought-for spectral approximations. The validity and effectiveness of the method are
demonstrated by solving five numerical examples. Numerical examples are presented in
the form of tables and graphs to make comparisons with the results obtained by other
methods and with the exact solutions more easier.
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1. Introduction

Due to the accuracy of ordinary and partial fractional differential equations in modeling various engineering and physical
phenomena such as bioengineering [25], solid mechanics [36], anomalous transport [28], continuum and statistical mechan-
ics [26], fluid-dynamic [16], economics [1], nonlinear oscillation of earthquakes [15], colored noise [27] and many other
problems [33], fractional calculus has become the focus of many researchers in recent years.

The time-fractional diffusion-wave equation, which is a mathematical model of a wide class of important physical phe-
nomena, is a linear integro-partial fractional differential equation that obtained from the classical diffusion-wave equation
by replacing the second-order time derivative term by a fractional derivative of order ν , 1 < ν � 2. Many of the univer-
sal mechanical, acoustic and electromagnetic responses may be described accurately by the time-fractional diffusion-wave
equation, see [31,32]. The fourth-order space derivative is arising in the wave propagation in beams and modeling formation
of grooves on a flat surface, thus considerable attention has been devoted to fourth-order fractional diffusion-wave equation
and its applications, see [33].
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Several numerical methods have been proposed in the last few years for solving such equations. In [6,7], Cui pre-
sented high-order compact finite difference methods to solve the fractional diffusion and time fractional diffusion equation.
A compact difference scheme [17,12] is proposed for solving second- and fourth-order fractional diffusion-wave equations.
Chen et al. [5] proposed and developed the method of separation of variables with constructing the implicit difference
scheme for fractional diffusion-wave equation with damping. Recently, Hu and Zhang [18] proposed the finite difference
scheme for approximating the solution of the fourth-order fractional diffusion-wave equation. An explicit analytical solution
is proposed in [14] for space–time fractional wave equation. In [8], Darzi et al. solved fractional diffusion-wave equations,
by using the Sumudu transform method. Some other numerical methods are introduced for solving fractional differential
equations with sub-diffusion and super-diffusion, see [13,21,22,4,20,35,40].

Spectral methods are a class of important tools for obtaining the numerical solutions of fractional differential equations.
They have excellent error properties and they offer exponential rates of convergence for smooth problems [3,38,39]. Consid-
erable attention has been devoted to the use of orthogonal polynomials aiming to deal with various fractional differential
equations, by reducing them to systems of algebraic equations that greatly simplify obtaining their solutions. Moreover,
the operational matrices of fractional derivatives are derived and used together with spectral methods based on orthogonal
polynomials for developing numerical approximations to fractional differential equations, see [9,10]. Recently, and with the
help of operational matrices of fractional derivatives for orthogonal polynomials, the tau spectral method is also utilized to
solve spectrally space-fractional diffusion equations, see [11,34,37].

In the current work, we investigate and develop some efficient spectral algorithms to solve spectrally second- and fourth-
order fractional diffusion-wave equations and fractional diffusion-wave equation with damping. These algorithms are based
principally on shifted Jacobi tau-spectral method combined with the generalized shifted Jacobi operational matrix of inte-
grals.

The current article is organized as follows. In Section 2, the shifted Jacobi polynomials with their properties and their
operational matrix to fractional integration are presented. In Sections 3, 4 and 5, the shifted Jacobi operational matrix of
fractional integration is applied together with the shifted Jacobi tau spectral method to give numerical solutions for second-
and fourth-order fractional diffusion-wave equations and fractional diffusion-wave equation with damping, respectively. In
Section 6, several numerical examples and comparisons between our obtained numerical results and those of other methods
are considered. Also a conclusion is given in Section 7.

2. Operational matrices of shifted Jacobi polynomials

Riemann–Liouville and Caputo fractional definitions are the two most used from all the other definitions of fractional
calculus which have been introduced recently.

Definition 2.1. The integral of order ν � 0 (fractional) according to Riemann–Liouville is given by

Iν f (x) = 1

Γ (ν)

x∫
0

(x − t)ν−1 f (t)dt, ν > 0, x > 0,

I0 f (x) = f (x), (2.1)

where

Γ (ν) =
∞∫

0

xν−1e−x dx

is gamma function.
The operator Jν satisfies the following properties

Iν Iμ f (x) = Iν+μ f (x),

Iν Iμ f (x) = Iμ Iν f (x),

Iνxβ = Γ (β + 1)

Γ (β + 1 + ν)
xβ+ν . (2.2)

Definition 2.2. The Caputo fractional derivative of order ν is defined by

Dν f (x) = 1

Γ (m − ν)

x∫
0

(x − t)m−ν−1 dm

dtm
f (t)dt, m − 1 < ν � m, x > 0, (2.3)

where m is the ceiling function of ν .
The operator Dν satisfies the following properties
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