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We apply the piecewise constant, discontinuous Galerkin method to discretize a fractional 
diffusion equation with respect to time. Using Laplace transform techniques, we show that 
the method is first order accurate at the nth time level tn , but the error bound includes a 
factor t−1

n if we assume no smoothness of the initial data. We also show that for smoother 
initial data the growth in the error bound as tn decreases is milder, and in some cases 
absent altogether. Our error bounds generalize known results for the classical heat equation 
and are illustrated for a model problem.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Consider an initial-value problem for an abstract, time-fractional diffusion equation [7, p. 84]

∂t u + ∂1−ν
t Au = 0 for t > 0, with u(0) = u0 and 0 < ν < 1. (1)

Here, we think of the solution u as a function from [0, ∞) to a Hilbert space H, with ∂t u = u′(t) the usual derivative with 
respect to t , and with

∂1−ν
t u(t) = ∂

∂t

t∫
0

(t − s)ν−1

Γ (ν)
u(s)ds

the Riemann–Liouville fractional derivative of order 1 − ν . The linear operator A is assumed to be self-adjoint, positive-
semidefinite and densely defined in H, with a complete orthonormal eigensystem φ1, φ2, φ3, . . . . We further assume that 
the eigenvalues of A tend to infinity. Thus,

Aφm = λmφm, 〈φm, φn〉 = δmn, 0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ · · · ,
where 〈u, v〉 is the inner product in H; the corresponding norm in H is denoted by ‖u‖ = √〈u, u〉. In particular, we may 
take Au = −∇2u and H = L2(Ω) for a bounded spatial domain Ω , with u subject to homogeneous Dirichlet or Neumann 
boundary conditions on ∂Ω . Our problem (1) then reduces to the classical heat equation when ν → 1.
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Many authors have studied techniques for the time discretization of (1), but obtaining sharp error bounds has proved 
challenging. In studies of explicit and implicit finite difference schemes [1,3,8,14,17,20] the error analyses typically assume 
that the solution u(t) is sufficiently smooth, including at t = 0, which amounts to imposing compatibility conditions on the 
initial data and source term. In our earlier work on discontinuous Galerkin (DG) time-stepping [11,15,16], we permitted 
more realistic behaviour, allowing the derivatives of u(t) to be unbounded as t → 0, but were seeking error bounds that are 
uniform in t using variable time steps. In the present work, we again consider a piecewise-constant DG scheme but with 
a completely different method of analysis that leads to sharp error bounds even for non-smooth initial data, at the cost of 
requiring a constant time step 	t . Our previous analysis [11, Theorem 5] of the scheme (5), in conjunction with relevant 
estimates [10] of the derivatives of u, shows, in the special case of uniform time steps, only a sub-optimal error bound at 
the nth time level tn = n	t ,∥∥Un − u(tn)

∥∥ ≤ C	trν
∥∥Aru0

∥∥ for 0 ≤ r < 1/ν. (2)

In our main result, we substantially improve on (2) by showing that∥∥Un − u(tn)
∥∥ ≤ Ctrν−1

n 	t
∥∥Aru0

∥∥ for 0 ≤ r ≤ min(2,1/ν). (3)

Thus, for a general u0 ∈ H the error is of order t−1
n 	t at t = tn , so the method is first-order accurate but the error bound 

includes a factor t−1
n that grows if tn approaches zero, until at t = t1 the bound is of order t−1

1 	t = 1. However, if 1/2 ≤
ν < 1 and u0 is smooth enough to belong to D(A1/ν), the domain of A1/ν , then the error is of order 	t , uniformly in tn . 
For 0 < ν < 1/2, no matter how smooth u0 a factor t2ν−1

n is present. To the best of our knowledge, only Cuesta et al. [2]
and McLean and Thomée [12, Theorem 3.1] have hitherto investigated the time discretization of (1) for the interesting case 
when the initial data might not be regular, the former using a finite difference–convolution quadrature scheme and the 
latter a method based on numerical inversion of the Laplace transform.

In the present work, we do not discuss the spatial discretization of (1). By contrast, Jin, Lazarov and Zhou [6] studied the 
piecewise linear finite element solution uh(t) ≈ u(t) using a quasi-uniform partition of the spatial domain Ω into elements 
with maximum diameter h, but with no time discretization. They worked with an alternative formulation of the fractional 
diffusion problem,

∂ν
t,Cu − ∇2u = 0 for x ∈ Ω and 0 < t ≤ T , (4)

where ∂ν
t,C denotes the Caputo fractional derivative of order ν , and proved [6, Theorems 3.5 and 3.7] that if uh(0) = u0h , for 

an appropriate uh0 ≈ u0, then∥∥uh(t) − u(t)
∥∥ + h

∥∥∇(uh − u)
∥∥ ≤ Ctν(r−1) ×

{
h2
h‖Aru0‖, r ∈ {0,1/2},
h2‖Aru0‖, r = 1,

where 
h = max(1, log h−1). These estimates for the spatial error complement our bounds for the error in a time discretiza-
tion.

We define a piecewise-constant approximation U (t) ≈ u(t) by applying the DG method [11,13],

Un − Un−1 +
tn∫

tn−1

∂1−ν
t AU (t)dt = 0 for n ≥ 1, with U 0 = u0, (5)

where Un = U (t−
n ) = limt→t−n U (t) denotes the one-sided limit from below at the nth time level. Thus, U (t) = Un for tn−1 <

t ≤ tn . Since we do not consider any spatial discretization, U is a semidiscrete solution with values in H. A short calculation 
reveals that

tn∫
tn−1

∂1−ν
t AU (t)dt = 	tν

n∑
j=1

βn− j AU j,

with

β0 = 	t−ν

tn∫
tn−1

(tn − t)ν−1

Γ (ν)
dt = 1

Γ (1 + ν)

and, for j ≥ 1,

β j = 	t−ν

tn− j∫
tn− j−1

(tn − t)ν−1 − (tn−1 − t)ν−1

Γ (ν)
dt = ( j + 1)ν − 2 jν + ( j − 1)ν

Γ (1 + ν)
.
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