
Conservative integral form of the incompressible Navier–Stokes equations
for a rapidly pitching airfoil

SolKeun Jee a,⇑, Robert D. Moser b

a NASA Ames Research Center, Moffett Field, CA 94035, USA
b Department of Mechanical Engineering and Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX 78712, USA

a r t i c l e i n f o

Article history:
Received 4 November 2010
Received in revised form 28 March 2012
Accepted 9 April 2012
Available online 25 April 2012

Keywords:
Conservative form
Moving grid
Moving body
Pitching airfoil
Thrust

a b s t r a c t

This study provides a simple moving-grid scheme which is based on a modified conserva-
tive form of the incompressible Navier–Stokes equations for flow around a moving rigid
body. The modified integral form is conservative and seeks the solution of the absolute
velocity. This approach is different from previous conservative differential forms [1–3]
whose reference frame is not inertial. Keeping the reference frame being inertial results
in simpler mathematical derivation to the governing equation which includes one dyadic
product of velocity vectors in the convective term, whereas the previous [2,3] needs to
obtain the time derivative with respect to non-inertial frames causing an additional dyadic
product in the convective term. The scheme is implemented in a second-order accurate
Navier–Stokes solver and maintains the order of the accuracy. After this verification, the
scheme is validated for a pitching airfoil with very high frequencies. The simulation results
match very well with the experimental results [4,5], including vorticity fields and a net
thrust force. This airfoil simulation also provides detailed vortical structures near the trail-
ing edge and time-evolving aerodynamic forces that are used to investigate the mechanism
of the thrust force generation and the effects of the trailing edge shape. The developed
moving-grid scheme demonstrates its validity for a rapid oscillating motion.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Numerically representing unsteady flow due to motion of a moving rigid body with possible flow-structure interactions is
challenging, and a number of approaches have been pursued. Among them are immersed boundary method [6], adaptive
remeshing [7], overlapping meshes [8], and conservative forms of the Navier–Stokes equations in non-inertial reference
frames [1–3]. The first three methods require additional computations in solving the governing Navier–Stokes equations:
the immersed boundary method needs mass and momentum source terms for the immersed boundaries, the adaptive meth-
od needs to regenerate mesh along with the moving body, and the overlapping meshes need interpolation in the overlapped
region. Instead, the conservative forms provide the governing equations for grids fixed to moving bodies so do not necessar-
ily need the extra computations. The conservative forms avoid the non-conservative momentum source terms (e.g., Coriolis
and angular acceleration terms in rotating frames) in the Navier–Stokes equations for a relative velocity in a non-inertial
reference frame [2,6].

Warsi [1] derived a conservative form of the Navier–Stokes equations in non-inertial curvilinear coordinates. A similar
form was used by Visbal [9] for a plunging airfoil. Beddhu et al. [2] simplified the conservative momentum equation (i.e.,
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Eq. 3.164 of [1]) to the vector form in non-inertial Cartesian coordinates (i.e., Eq. 2.14 of [2] for a self-gravitating, rotating
body and Eq. 2.16 of [2] for a rotating frame in a gravitational field). Although Beddhu et al. [2], used the assumption of con-
stant angular velocity for the Cartesian in the middle of their derivation, the final forms can be also used for time-dependent
angular velocity.1 The conservative form in a gravitational field (i.e., Eq. 2.16 of [2]) is applied for moving bodies by Kim and
Choi [6]. Luo and Bewley [3] independently derived the conservative form using two different approaches (via the appropriate
temporal differentiation in non-inertial curvilinear coordinates and, separately, the direct transformation from inertial Cartesian
to non-inertial curvilinear coordinates).

The proposed moving-grid scheme follows the basic idea of the conservative forms for numerically stable solution. Sim-
ilar to the previous conservative forms [1–3], the proposed conservative form seeks the solution of the absolute velocity (the
non-conservative form seeks the relative velocity). Vectors and tensors are expressed in the non-inertial coordinates that are
fixed to the moving body, which is another similarity.

Contrast to the previous [1–3], the proposed conservative form is based on a modified integral form of the incompressible
Navier–Stokes equations for an arbitrarily moving control volume. The standard integral form (e.g., Eqs. 5.13.2 and 5.14.1 of
[10]) is enough if computation domain is inertial and the positions of grid points are moving in the domain. In most cases and
also here, however, the computation domain is fixed to the moving grid so the positions of grid points are invariant in time in
the domain. In consequence, the integral form needs to be modified. Since the motion of the moving grid with respect to the
inertial frame is already included in the convective term of the integral form, the modification should include the time-
dependent orientation of the non-inertial coordinates with respect to the inertial frame.

This approach has several advantages over the previous[1–3]. (1) It does not need to convert the time derivative in the
Navier–Stokes equations with respect to the inertial frame into that with respect to the non-inertial frame. In consequence,
mathematical derivation for the modification of the standard integral form is simpler than that for the previous forms. This
advantage is closely related to the followings. (2) The convective term maintains its form after the modification, whereas the
convective terms in the previous (i.e., Eq. 2.16 of [2] and Eq. 28 of [3]) include an additional dyadic product of velocity vec-
tors. In results, one convecting velocity is required for this approach whereas two velocities in the others. (3) The simple form
of the governing equations, specifically the convective term, makes numerical implementation straightforward, otherwise
further discretization methods are required for the additional dyadic product.

Details about the proposed moving-grid scheme are presented in Section 2 with its implementation in a Navier–Stokes
solver CDP. The verification of this scheme is included in Section 3. The numerical scheme is used to simulate a high-fre-
quency pitching airfoil in Section 4 which discusses detailed flow structures and the mechanism of the thrust force gener-
ation. Conclusions and future work are summarized in Section 5.

2. Numerics

The moving-grid scheme developed in this study modified the standard integral form of the incompressible Navier–
Stokes equations for a control volume which is moving with respect to a stationary inertial reference frame. The modified
integral form is conservative as is the standard form and is solved for the absolute velocity. This conservative form has sev-
eral advantages to the previous [1–3], which is discussed in this section. For the simulations considered here, grids are rigidly
moved with prescribed motions. Details of this scheme are described in Section 2.1, and then its implementation in a finite-
volume Navier–Stokes solver CDP is discussed in Section 2.2.

2.1. A moving-grid scheme

In order to introduce the notation to be used, we first consider the standard integral forms of the Navier–Stokes equations
of the absolute velocity ui for an arbitrary moving control volume (e.g., Eqs. 5.13.2 and 5.14.1 of [10])
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The reference frame for Eqs. (1) and (2) is inertial, and all vectors and tensors are expressed in a Cartesian coordinate system
(xi) in the inertial frame. Cartesian coordinate systems are considered here, because the transformation between the two
Cartesian is invariant in space, which is useful in the later derivation. The control volume has a fixed amount of volume
V and face area S. The velocity wi is the velocity of the control volume with respect to the inertial frame, and vi is the relative
velocity of ui.

v i ¼ ui �wi: ð3Þ
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