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a b s t r a c t

It is possible to relax the Courant–Friedrichs–Lewy condition over the time step when
using explicit schemes. This method, proposed by Leveque, provides accurate and correct
solutions of non-sonic shocks. Rarefactions need some adjustments which are explored
in the present work with scalar equation and systems of equations. The non-conservative
terms that appear in systems of conservation laws introduce an extra difficulty in practical
application. The way to deal with source terms is incorporated into the proposed proce-
dure. The boundary treatment is analysed and a reflection wave technique is considered.
In presence of strong discontinuities or important source terms, a strategy is proposed to
control the stability of the method allowing the largest time step possible. The perfor-
mance of the above scheme is evaluated to solve the homogeneous shallow water equa-
tions and the shallow water equations with source terms.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Upwind methods have proved a suitable way to discretize the shallow water equations being able to predict the water
profile and discharges in hydraulic modelling [1]. The first order explicit upwind method, in particular, has gained wide-
spread acceptance in this area because of its conceptual simplicity despite the time step size is restricted by stability reasons
to fulfil the Courant–Friedrichs–Lewy (CFL) condition.

It is possible to relax the condition over the time step size when using explicit schemes. A generalisation of the first order
explicit upwind scheme, modified to allow large time steps, was explored by Leveque [2,3] (large time step, LTS) first in the
scalar non-linear case and then adapted to systems of equations. It becomes stable for CFL values larger than one and pro-
vides accurate and correct solutions of shocks. Some difficulties can be met when a rarefaction is present in the solution so
that adjustments are necessary. Other class of large time step explicit schemes based on TVD properties [4] have been ana-
lysed and tested mainly for the scalar equations or systems of equations without source terms. These will not be considered
in the present work.

The LTS scheme is increasingly used because it is able to achieve a reduction in the computational time keeping reason-
ably accurate. Engineering applications related with atmospheric dynamics [5] and Euler equations [6] have been recently
published. The shallow water equations, being a hyperbolic system of equations, are also a good candidate for the application
of the LTS scheme and an overview of this scheme in the context of the shallow water system was presented in [7]. The
source term treatment and the boundary conditions discretization are crucial to allow stability in presence large CFL values
in realistic cases.
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The source term discretization has been strongly discussed in the literature. The main focus consisting on maintaining the
discrete balance between flux and source terms giving rise to well-balanced schemes [8,9,1] has given way to techniques
that prevent instability and ensure conservation by a suitable flux difference redistribution [10] avoiding the necessity of
reducing the time step below the CFL condition. The idea of using a stationary jump discontinuity representing the source
term in the Riemann solution [11] and the corresponding augmented approximate Riemann solvers for the shallow water
equations [12] can be incorporated to the LTS scheme. Moreover, in several situations, the presence of large source terms
playing a leading role over the convective terms can lead to wrong solutions using the LTS because the wave celerity is
not well estimated due to the reduced number of time steps done. A way of overcoming this situation is also proposed pro-
viding the Rankine–Hugoniot conditions derived from the Riemann problem analysis.

The boundary conditions dicretization is another issue of importance in a numerical model. In the context of the shallow
water equations, open boundaries and closed boundaries can appear and must be analysed. From the structure of the LTS
scheme, information is transmitted not only to the immediate neighbouring cells but also to a number of other cells growing
as the CFL value increases. Therefore, some information can cross the boundaries and a careful consideration is required in
order to reproduce all kind of scenarios such as subcritical, supercritical and closed boundaries. A first approximation of the
boundary treatment was also proposed in [7], where an accumulation technique was suggested in the case of closed bound-
aries. Another possibility called reflection technique is considered here.

This method is proposed to be a general tool for solving the 1D shallow water equations for open channel and river flow
problems. Several problems such as wet/dry fronts, sonic points, changes in the flow regime or large discontinuities are al-
ready solved for the conventional upwind explicit scheme hence a kind of CFL limiter can be proposed in order to reduce the
initial CFL number or directly recover the original scheme with CFL = 1 when these situations are present.

The outline is as follows: the discretization is described first, for 1D scalar equations with and without source terms. In
the non-linear case,the treatment of the rarefaction waves is explored. Then, the scheme is extended to systems of equations,
in particular to solve the shallow water equations where bed slope and friction source terms are incorporated into the pro-
posed procedure. The way of dealing with the boundaries is analysed in the cases of systems and two possibilities are pro-
posed: an accumulation technique and a reflection technique. They are tested in a dam break problem with solid wall
conditions in the inlet and outlet boundaries. Moreover, the use of a parameter that limits the CFL number in the presence
of big discontinuities or large source terms is proposed. Finally, the scheme is evaluated and tested trough several problems
with analytical solutions where the bed slope and the friction terms plays a leading role.

2. Scalar equations

2.1. Linear scalar equation

Consider the linear scalar equation:
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where u is the conserved variable and f ðuÞ is a linear function, f ðuÞ ¼ ku; k ¼ constant.
The numerical resolution of (1) by means of the first order upwind finite volume method starts by integrating (1) in a

volume X.
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where dX denotes the volume boundary.
In the case of a uniform discrete mesh X ¼ Dx. A cell-centred upwind finite volume method is based on a piecewise con-

stant approximation of the function. Therefore, u and f are uniform per cell and the first integral of (2) can be approximated
at cell Xi by:
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After application of the Gauss theorem to the second integral in (2):Z
X
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f ðuÞdX ¼ f �iþ1=2 � f �i�1=2 ð4Þ

where the numerical flux f �iþ1=2 can be determined using an approximate solver. The numerical scheme can be formulated in a
general way as:
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