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we focus on decaying homogeneous turbulence. It is shown that two numerical implemen-
tations of the model in the same finite volume code lead to significantly different results in
terms of kinetic energy decay, time evolutions of the viscous dissipation and kinetic energy
spectra. In comparison with spectral LES results, excellent predictions are however
obtained with a novel formulation of the model derived from the discrete Navier-Stokes
Large eddy simulation equaFions. We_a}so highlight the effect of discretiza_tion errors on the measurement of
Finite volume method physical quantities that involve scales close to the grid resolution.

Smagorinsky model © 2008 Elsevier Inc. All rights reserved.
Homogeneous isotropic turbulence
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1. Introduction

The aim of large eddy simulations is to reproduce with accuracy the large scale properties of a turbulent flow at a much
lower computational cost than required by direct numerical simulations (DNS). By definition, LES are thus performed on
coarse meshes that do not capture the small scales which are present in the actual flow. These subgrid scales are nevertheless
important and strongly influence the dynamics of the large resolved scales. The main challenge of LES is then to appropriately
model the influence of the subgrid scales on the resolved scales through a subgrid scale (SGS) model. On these grounds, SGS
modeling is largely a physics problem that needs to take into account the nature of turbulence and in particular the cascade
of energy from large to small scales through the inertial range. This viewpoint is supported by Kolmogorov’s universality
theory which implies that the statistical properties of turbulence are universal in the inertial range at large Reynolds
numbers.

The numerical method that is most faithful to the LES paradigm is of course the spectral method. Focusing on homoge-
neous turbulence, the resolved velocity field can indeed be developed on the basis of Fourier modes limited to wave vectors
up to a given cut-off. Hence, the neglected modes unambiguously define the subgrid scales. The LES equations are also per-
fectly well defined since all spatial derivatives can be computed exactly by multiplication of the Fourier modes with the
appropriate powers of the wave vector. In the absence of explicit filtering (for example with a Gaussian or top-hat filter),
the physical problem of subgrid scale modeling is then completely free of discretization errors.

In practice, the flow configurations are usually much more complex. For problems in wall-bounded or complex geome-
tries, one usually resorts to other spatial discretizations of the Navier-Stokes equations. Here, the attention is restricted to
finite volume methods, although the present arguments can be applied to other techniques like finite elements or finite dif-
ference schemes. Ultimately, the flow is simulated using a finite number of discrete variables located at a given set of grid
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points. For finite volume schemes, these variables represent the velocity and pressure fields averaged over control volumes
of typical size A. In LES, A is obviously quite large in order to limit the computer requirements. If we exclude explicit filtering,
the filtering operation which requires subgrid scale modeling can then be identified with the volume averaging on the coarse
mesh (this averaging is responsible for the destruction of small scale information). However, because the mesh is coarse, the
discrete operators needed for differentiations and interpolations introduce further errors that might be very significant. For
differentiation operators, the severity of this problem increases with the order of the derivative taken. In that case, the phys-
ical relevance of the numerical results becomes questionable.

Several previous studies highlighted the interplay between discretization errors and subgrid modeling. The first system-
atic analyses of discretization errors in large eddy simulations are due to Vreman et al. [1] and Ghosal [2]. In the latter, the
author analyzed finite difference operators in homogeneous isotropic turbulence and showed that discretization errors could
be of equal importance as the subgrid scale model’s contribution. To overcome this problem, the author recommends the use
of higher-order discretization schemes or the explicit filtering of the LES field to damp scales close to the grid size. This study
was extended to the case of stratified sheared turbulence where LES discretization errors were analyzed using data obtained
from high resolution DNS [3].

The use of high-order methods is very demanding in terms of implementation and computational costs. For this reason,
many studies have focused on the application of explicit filters in low-order methods with the aim of minimizing the influ-
ence of numerical errors. As explained in [4], the distinction between discretization and explicit filtering is then essential.
Discretization is responsible for a loss of information and ultimately leads to a closure problem (this is made clear by con-
sidering the discretizing operators as “filters” [5]). This contrasts with explicit filters that can be formally taken into account
by using a power series in the filter width (at least for a certain class of filters). The benefit provided by explicit filtering still
remains unclear [6]. In particular, Lund [7] showed that a grid refinement with traditional models (i.e. without explicit fil-
tering) may lead to better results than the use of an explicit filter in two directions. Furthermore, explicit filtering introduce
difficulties related to the commutation error between the filter and differentiation operators [8]. Nevertheless, a revived
interest in explicit filters has appeared in relation to “variational multiscale models” in which scales close to the grid size
are separated from the rest of the resolved scales to determine the subgrid scale model [9,10].

Other studies have focused on the minimization of the total error (i.e. sum of modeling and discretization errors) and its
dependence on numerical and physical settings [11-14]. As also observed by [15], the reduction of one component (or both)
of the error may not necessary lead to a decrease of the total error. Hence, this may yield counter-intuitive effects and poses
the question of quality and reliability of LES predictions [14].

The purpose of this paper is twofold. We first compare two implementations of the Smagorinsky subgrid scale model in a
finite volume code. These implementations differ only in terms of the model discretization and we use a spectral LES (without
explicit filtering) as the benchmark case. It is found that the performance of the model largely depends on the discretization
adopted and we advocate the use of a discretization which is derived from the discrete implementation of the Navier-Stokes
equations. Some filtered DNS results are also presented but only for illustrative purposes. They are deliberately not used as the
main benchmark since we do not focus on the intrinsic performance of the Smagorinsky model but only on how to implement
the analytical form as faithfully as possible in a numerical code. In that respect, comparison with a spectral LES is more appro-
priate whereas comparison with a filtered DNS is more suitable to test the physical content of a model.

The second objective of this work is to bring the attention on the ambiguity, resulting from discretization errors, of phys-
ical results extracted from LES on coarse meshes. We stress that the conclusions of this study are applicable to finite element
or finite difference schemes without any significant changes. Also, to avoid having to deal with the resolution of boundary
layers, we limit our attention to homogeneous turbulence. This further allows a detailed comparison with an accurate spec-
tral solver.

The manuscript is organized as follows. The second-order finite volume LES solver is presented in Section 2. Using kinetic
energy budgets, the performance of two implementations of the Smagorinsky subgrid scale model is compared in Section 3.
In Section 4, we comment on the importance of discretization errors in the measurement of physical quantities involving
length-scales close to the grid size. Finally, our conclusions are presented in Section 5.

2. Numerical method and subgrid modeling
2.1. Numerical discretization

The computations are performed using the CDP code developed at the Center For Turbulence Research (Stanford/ NASA
Ames). This code uses a collocated discretization of the incompressible Navier-Stokes equations in a node-based formula-
tion. A typical grid element is illustrated in Fig. 1. The label C corresponds to the location of the centroid of the element
in the original volume-based grid. In the dual mesh, the node-based control volumes are centered around each of the vertices
(nodes) of this original mesh. In the figure, P represents such a node of the dual mesh. The velocity and pressure fields are
stored at these nodes and the (independent) face normal velocity Uy are stored at the centroid of the dual volume’s faces.

The details of the code are described extensively in [16-18], and therefore, only the information relevant to the present
study is reported here. The LES equations derived from the incompressible Navier-Stokes equations are solved using the fol-
lowing fractional step method:
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