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a b s t r a c t

We present an implicit immersed boundary method for the incompressible Navier–Stokes
equations capable of handling three-dimensional membrane–fluid flow interactions. The
goal of our approach is to greatly improve the time step by using the Jacobian-free
Newton–Krylov method (JFNK) to advance the location of the elastic membrane implicitly.
The most attractive feature of this Jacobian-free approach is Newton-like nonlinear conver-
gence without the cost of forming and storing the true Jacobian. The Generalized Minimal
Residual method (GMRES), which is a widely used Krylov-subspace iterative method, is
used to update the search direction required for each Newton iteration. Each GMRES iter-
ation only requires the action of the Jacobian in the form of matrix–vector products and
therefore avoids the need of forming and storing the Jacobian matrix explicitly. Once the
location of the boundary is obtained, the elastic forces acting at the discrete nodes of the
membrane are computed using a finite element model. We then use the immersed bound-
ary method to calculate the hydrodynamic effects and fluid–structure interaction effects
such as membrane deformation. The present scheme has been validated by several exam-
ples including an oscillatory membrane initially placed in a still fluid, capsule membranes
in shear flows and large deformation of red blood cells subjected to stretching force.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

This paper considers an implicit immersed boundary method for simulating viscous incompressible flows with immersed
elastic membranes. The immersed boundary (IB) method was originally developed by Peskin [36] to study the fluid dynamics
of blood flow in the human heart. Peskin’s immersed boundary method has proven to be a very useful method for modeling
fluid–structure interaction involving large geometry variations. The original method has been developed further and applied
to many biological problems including platelet aggregation [14,15,52], the deformation of red blood cells in a shear flow [11],
the swimming of bacterial organisms and others [10,13]. More details on the immersed boundary method can be found in
[37] and the references therein.

Typically, in the framework of the IB method, the elastic boundary is treated as a collection of elastic fibers. Alternatively,
the elastic boundary is also modeled as an elastic membrane [11] or a thin shell [17]. These models are used to compute the
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forces acting at the discrete nodes representing the immersed boundary. For most biological tissues, their membranes are
stiff and therefore a small perturbation of the boundary can lead to large elastic forces. This causes a severe restriction in
time step required to maintain stability of the immersed boundary method. Much effort has been made to analyze the stiff-
ness of the IB method and remove this restriction [18,22,33,47,48]. Several semi-implicit and implicit methods have been
developed to alleviate this problem [12,21,31,35,51]. Comparisons of the explicit method and the implicit methods in the
context of moving immersed boundaries have been presented in [35,51]. In the context of immersed interface methods
(IIM) a quasi-Newton method has been proposed [27–29] to improve time stability. However, for very stiff problems, small
time steps are still required. In order to alleviate this problem, an unconditionally stable discretization of the immersed
boundary equations has been proposed [34]. In this scheme, an approximate Newton solver is employed to advance the loca-
tion of the boundary. The Newton method, however, requires a Jacobian matrix which is extremely expensive to compute
explicitly for every time step. To avoid forming the Jacobian matrix explicitly, an iterative matrix-free method has been
introduced in the context of the immersed continuum method [53]. Another strategy for solving the implicit IB equations
involves deriving Schur complement equations by eliminating one or more of the unknown variables [33,35]. Several meth-
ods have been employed to solve the Schur complement equations such as fixed point methods, projection methods and Kry-
lov-subspace methods.

Recently, an efficient semi-implicit IB method with arclength–tangent angle formulation has been proposed for two-
dimensional Navier–Stokes equations [21]. In this formulation, an unconditionally stable semi-implicit discretization is de-
rived and the small scale decomposition technique [20] is applied to the discretization. This semi-implicit scheme has much
better stability property than the explicit scheme and therefore offers a substantial computational cost saving. We note that
the stability of this scheme is weaker than the unconditionally stable scheme proposed in [34] because this scheme treats
only the leading order term implicitly [21].

In the present paper, an implicit immersed boundary method is presented with vastly improved time step by using the
Jacobian-free Newton–Krylov method (JFNK) [24] to advance the location of the elastic membrane implicitly. This matrix-
free approach has many advantages. The most attractive is Newton-like nonlinear convergence without the cost of forming
and storing the true Jacobian. In this Jacobian-free method, the search direction required for each Newton iteration is up-
dated using the Generalized Minimal Residual method (GMRES) [44], which is a widely used Krylov-subspace iterative meth-
od. Each GMRES iteration only requires the action of the Jacobian in the form of matrix–vector products and therefore avoids
the need of forming and storing the Jacobian matrix explicitly. The JFNK method has become established in computational
fluid dynamics (CFD) to deal with the nonlinear convection term [3,6,16,25]. In this paper, we employ the JFNK method to
advance the membrane location implicitly while still approximating the convection term explicitly. Once the location of the
boundary is obtained, the elastic forces acting at the discrete nodes of the membrane are computed. In the present work, an
elastic membrane model with bending stiffness proposed in [38,42] is employed. In our numerical studies, the immersed
boundary method provides the means of calculating the hydrodynamics and fluid–structure interaction effects such as mem-
brane deformation, and the finite element method with membrane model is used to calculate the elastic forces on the
membrane.

The remainder of this paper is organized as follow. In Section 2, we describe the governing equations, the immersed
boundary algorithm, the discrete model of capsule membranes and the method for advancing the membrane evolution in
time. We then present a detailed implementation of the present method in Section 3. In Section 4, some numerical examples
are presented and finally, some conclusions are given in Section 5.

2. Numerical methods

2.1. Governing equations

In a three-dimensional bounded domain X that contains an enclosed membrane CðtÞ, we consider the incompressible
Navier–Stokes equations formulated in primitive variables, written as

qðut þ ðu � rÞuÞ ¼ �rpþ lDuþ F; ð1Þ
r � u ¼ 0 ð2Þ

with boundary conditions

uj@X ¼ ub; ð3Þ

where u is the fluid velocity, p is the pressure, q and l are constant density and viscosity of the fluid, respectively. The effect
of the membrane CðtÞ immersed in the fluid results in a singular force F which has the form

Fðx; tÞ ¼
Z

CðtÞ
f ðq; r; s; tÞdðx� Xðq; r; s; tÞÞdqd rds; ð4Þ

where ðq; r; sÞ are curvilinear coordinates attached to the membrane at a material point, Xðq; r; s; tÞ is the position at time t in
Cartesian coordinates of the material point whose label is ðq; r; sÞ; x ¼ ðx; y; zÞ is spatial position, and f ðq; r; s; tÞ is the force
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