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Non-equilibrium rarefied flows are frequently encountered in a wide range of applications, 
including atmospheric re-entry vehicles, vacuum technology, and microscale devices. 
Rarefied flows at the microscale can be effectively modeled using the ellipsoidal statistical 
Bhatnagar–Gross–Krook (ESBGK) form of the Boltzmann kinetic equation. Numerical 
solutions of these equations are often based on the finite volume method (FVM) in 
physical space and the discrete ordinates method in velocity space. However, existing 
solvers use a sequential solution procedure wherein the velocity distribution functions 
are implicitly coupled in physical space, but are solved sequentially in velocity space. 
This leads to explicit coupling of the distribution function values in velocity space and 
slows down convergence in systems with low Knudsen numbers. Furthermore, this also 
makes it difficult to solve multiscale problems or problems in which there is a large range 
of Knudsen numbers. In this paper, we extend the coupled ordinates method (COMET), 
previously developed to study participating radiative heat transfer, to solve the ESBGK 
equations. In this method, at each cell in the physical domain, distribution function values 
for all velocity ordinates are solved simultaneously. This coupled solution is used as a 
relaxation sweep in a geometric multigrid method in the spatial domain. Enhancements 
to COMET to account for the non-linearity of the ESBGK equations, as well as the coupled 
implementation of boundary conditions, are presented. The methodology works well with 
arbitrary convex polyhedral meshes, and is shown to give significantly faster solutions than 
the conventional sequential solution procedure. Acceleration factors of 5–9 are obtained for 
low to moderate Knudsen numbers on single processor platforms.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

A number of present day applications involve rarefied flows with a wide range of length scales. Such flows are frequently 
encountered in microsystems, hypersonic vehicles, and vacuum technology, amongst others. Over the years, a large number 
of studies have been performed on the aerothermodynamics of hypersonic systems [1,2]. On the other hand, non-equilibrium 
rarefied flows in microsystems have only recently begun to receive attention [3–5]. Examples of microscale rarefied flows 
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Fig. 1. RF MEMS switch showing nickel membrane, contact pads and anchors [6].

include those in resonators, radio-frequency micro-electromechanical systems (RF MEMS), and microturbines, amongst oth-
ers. These flows are typically low-speed and incompressible, and thus are significantly different from compressible flows in 
hypersonic systems.

Furthermore, in many microsystem applications, dynamic transitions between continuum and rarefied regimes are fre-
quently encountered, for example in the transient damping of MEMS switches [6] (see Fig. 1). Here, a metallic membrane 
makes periodic contact with a contact pad under the action of electrostatic forces induced by an applied voltage. In the 
open position, the gas-filled gap between the membrane and the contact pad is a few microns. The Knudsen number Kn
(= λ/g , where λ is the molecular mean-free path and g is the gap height) is in the continuum regime. As the gap closes, 
the Knudsen number increases, and becomes arbitrarily large as contact is approached; the flow transitions periodically 
between the continuum and rarefied regimes as the switch opens and closes. In such a problem, hybrid approaches such 
as those in [7–9] become extremely complicated to implement, and assuring conservation of mass, momentum and energy 
over the switching cycle is very difficult. A unified treatment, with an efficient numerical scheme addressing the entire 
range of Knudsen numbers, is necessary.

One approach to modeling non-equilibrium rarefied flows is to solve the Boltzmann equation [10], which is valid over 
the entire range of Knudsen numbers, provided that distribution functions can be usefully defined. The Boltzmann equation 
is expressed as:
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where f (x, t, c) is the distribution function for molecular velocity at location x and time t , and c (= cxi + c y j + czk) is the 
molecular velocity vector. The number of molecules with coordinates within infinitesimal element dx near x and velocities 
within velocity space element dc near c is given by f dcdx. The right hand side of the equation is the net result of two 
separate processes: collisions between molecules of velocities c and c1 leading to depletion in the number of molecules of 
velocity c, and collisions between molecules of velocities c∗ and c∗

1 replenishing the molecules with velocities c. Here g is 
the magnitude of the relative velocity, i.e. g = |c − c1|, and σ represents the collision cross-section.

A commonly used particle-based approach for solving the Boltzmann equation is the Direct Simulation Monte Carlo 
(DSMC) method which solves it by stochastic simulations [10,11]. Even though DSMC was originally developed for hyper-
sonic systems, in the subsequent years it has been extended to model micro-channel flows [12,13]. However, DSMC can 
become computationally very expensive for low-speed and unsteady flows. This is because a large number of samples are 
required to reduce noise-to-signal ratio in stochastic DSMC solutions. To solve this problem, an information preservation (IP) 
method, which preserves macroscopic flow information, has been developed for low speed micro-scale gas flows [14–16]. 
Over the years, hybrid continuum/particle methods have also been developed [7–9] for multi-scale system simulation. These 
methods solve Euler/Navier–Stokes equations in regions of near-equilibrium and DSMC in regions of non-equilibrium. A hy-
brid particle scheme was formulated in [17] where both continuum and rarefied regimes were modeled with particle-based 
methods. It modeled rarefied regions using DSMC, whereas it used a DSMC-based low diffusion particle method for inviscid 
flow simulation in the remaining regions of the flow.

As an alternative to stochastic solution techniques, deterministic approaches can also be used to solve the Boltzmann 
equation. These are noise-free and can be easily coupled to other deterministic solvers in multi-physics problems. For 
low-speed incompressible flows of the type encountered in microsystems, a relaxation approximation to the collision term 
is possible, and the Bhatnagar–Gross–Krook (BGK) form of the equation may be used [18]. In this model, the velocity 
distribution function f (x, t, c) is given by:
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where fγ is a Maxwellian distribution function, and ν is the collision frequency. This model always gives non-negative 
production of entropy, and thus satisfies the Boltzmann H-theorem. Furthermore, it reproduces a Maxwellian distribution 
at equilibrium. However, the main shortcoming of the BGK equation is that the Prandtl number (Pr) is always unity in-
stead of the correct value of around 2/3 for monatomic gases and 3/4 for diatomic gases. A variant of the BGK model 
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