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In this article, a rigorous framework for the analysis of the convergence of the direct 
simulation Monte Carlo (DSMC) method is presented. It is applied to the simulation of 
two test cases: an axisymmetric jet at a Knudsen number of 0.01 and Mach number of 
1 and a two-dimensional cylinder flow at a Knudsen of 0.05 and Mach 10. The rate of 
convergence of sampled quantities is found to be well predicted by an extended form of 
the Central Limit Theorem that takes into account the correlation of samples but requires 
the calculation of correlation spectra. A simplified analytical model that does not require 
correlation spectra is then constructed to model the effect of sample correlation. It is then 
used to obtain an a priori estimate of the convergence error.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Error in Monte Carlo particle methods, such as e.g. DSMC (direct simulation Monte Carlo), can be defined, in the broadest 
possible sense, as the difference between the statistical properties of the computational particles and the corresponding 
moments of the exact solution of the equation being discretized. This error originates from multiple sources which either 
mitigate or reinforce one another. The first type of error is that introduced by the use of a finite number of samples k to 
estimate the statistical properties of the particles in the simulation. It will be referred to as the convergence error in this 
article. Error can also come from the use of finite numerical parameters in the application of the particle method which 
introduces error due to the numerical scaling (as each computational particle represents W p physical particles, and both 
time and space are discretized). This error is most commonly due to the use of a too small number of particles N p , a too 
large time step �t , or too large cells. This type of error will be termed numerical error in the following. Error can also be due 
to the inability of the method, in the absence of numerical error, to reproduce the moments of the PDE being discretized. 
This issue will not be addressed in the present work noting that DSMC, the method used in this article, has been shown to 
consistently model the homogeneous Boltzmann equation [1] in the limit of Np → ∞.

Convergence error, the focus of this article, is referred to as the statistical error in [2] and was found in [3] to vary as 
A (N × k)−1/2. The same result was later obtained in [4]. The error was related in [2] to the physical fluctuations in the 
gas and closed form expressions were obtained in terms of non-dimensional flow numbers for A. From an error perspec-
tive, the role of sampling in a DSMC simulation is to reduce the convergence error affecting the quantities being sampled 
for. Despite the previous investigations of the convergence error cited above, there are no clear requirements within the 
DSMC community as to the number of sampling steps required to obtain accurate or converged results for those sampled 
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properties. Often an arbitrarily large number of samples, e.g. 105 [5] is used without further considerations or the sampling 
period is extended [6] “until the statistical error is small enough”. This situation is, in no small part, due to the correlation 
between samples which prevents the use of the Central Limit Theorem [7]. For instance, the predictions for the statistical 
error due to finite sampling presented in [2] only hold in the absence of correlation between samples which leads its au-
thors to sample only every 250 time steps in the DSMC simulations conducted to validate them. Many authors also try to 
reduce the correlation between successive samples by only sampling every few time steps such as [8] or [9] to obtain more 
independent samples. This shows that the time correlation between samples in DSMC simulations is a well known issue 
although it has not been accounted for in any existing work about the convergence error. The present article thus aims to 
derive expressions for the convergence error that take the correlation of samples into account.

The objective of this article is furthermore to present an investigation of the convergence error within the framework 
of a test case that is sufficiently complex so as to highlight features or phenomena that users of the method are likely to 
encounter in practice. To accomplish this, instead of using a relatively simple canonical test case such as channel flow [10,2,
11], two more complex cases are investigated. The first consist of an axisymmetric supersonic jet, which is a configuration of 
great practical interest to the rarefied gas dynamics community [12]. The second test case is a two-dimensional hypersonic 
cylinder flow which is often used for numerical studies [13,14].

In this paper, a rigorous formal definition of the convergence error in Monte Carlo particle simulations is first presented. 
The goal of the article is to provide an expression for the value of the convergence error that can be used for its a priori 
determination during the course of the simulation. As previously mentioned, the convergence error is greatly affected by 
the time correlation between samples. This makes it necessary to quantify the correlation between samples, an issue which 
is discussed in Section 3. A Central Limit Theorem that takes correlation into account is then introduced. It provides an 
expression for the aforedefined convergence error in terms of the autocorrelation function of samples. This expression can 
readily be used “on the fly” during the simulation to assess the convergence of cellwise sampled quantities. Convergence 
error predictions are then assessed within the framework of the two previously mentioned test cases.

2. Framework for error analysis

2.1. Implementation of the DSMC procedure

A simple argon gas in a two-dimensional (or axisymmetric) domain � = {(x, y)} ⊂ R
2 with velocities in R3 is considered. 

� is decomposed into Nc quadrangular cells {�i}Nc
i=1 of respective volume {V i}Nc

i=1 via quadrangulation �h:

� =
⋃

�i∈�h

�i (1)

such that Vi ≤ h, ∀ 1 ≤ i ≤ Nc . The number density ni in cell i that contains Ni particles is obtained with

ni = W p Ni

V i
, (2)

each computational particle representing W p physical particles so that the entire domain contains Np particles. A con-
stant time step �t and scaling factor W p are used throughout the domain. The axisymmetric move procedure detailed 
in [15] p. 371 is employed for the first test case while a standard Euler explicit scheme is used for the second which is 
two-dimensional. The standard NTC (No Time Counter) collision scheme [15] is used to calculate the number of potential 
collisions in each cell:

Ncoll,i = 1

2Vi
W p�tNi Ni (σ g)max,i , (3)

where Ni , the average number of particles in the cell, is obtained by an exponential moving average with a relaxation 
factor of 0.001. Binary elastic collisions are modeled via the variable hard sphere model [15] with a reference diameter of 
4.17 × 10−10 m at 273 K and a temperature exponent of 0.81. Further details concerning our implementation of the DSMC 
procedure can be found in [16].

2.2. Cell and particle based variables

Any variable characterizing particle j at time tk is denoted by yk
j with 1 ≤ j ≤ Np which can for instance represent 

its instantaneous position 	xk
j or velocity 	vk

j . Cell-based quantities are denoted by yk
i with 1 ≤ i ≤ Nc which designates any 

variable specific to cell i at time tk such as the number of particles contained in the cell Nk
i . When all particles or all cells 

of the simulations are simultaneously considered, particle and cell-based quantities can both be represented by a series of 
vectors, namely 	yk =

(
yk

1, . . . ,yk
N p

)
and 	yk =

(
yk

1, . . . , yk
Nc

)
. The average value of y in cell �i at time step k is naturally 

defined as:
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