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a b s t r a c t

A direct forcing immersed boundary framework is presented for the simple and efficient
simulation of strongly coupled fluid–structure interactions. The immersed boundary
method developed by Yang and Balaras [J. Yang, E. Balaras, An embedded-boundary formu-
lation for large-eddy simulation of turbulent flows interacting with moving boundaries, J.
Comput. Phys. 215 (1) (2006) 12–40] is greatly simplified by eliminating several compli-
cated geometric procedures without sacrificing the overall accuracy. The fluid–structure
coupling scheme of Yang et al. [J. Yang, S. Preidikman, E. Balaras, A strongly-coupled,
embedded-boundary method for fluid–structure interactions of elastically mounted rigid
bodies, J. Fluids Struct. 24 (2008) 167–182] is also significantly expedited by moving the
fluid solver out of the predictor–corrector iterative loop without altering the strong cou-
pling property. Central to these improvements are the reformulation of the field extension
strategy and the evaluation of fluid force and moment exerted on the immersed bodies, by
taking advantage of the direct forcing idea in a fractional-step method. Several cases with
prescribed motions are examined first to validate the simplified field extension approach.
Then, a variety of strongly coupled fluid–structure interaction problems, including vortex-
induced vibrations of a circular cylinder, transverse and rotational galloping of rectangular
bodies, and fluttering and tumbling of rectangular plates, are computed. The excellent
agreement between the present results and the reference data from experiments and other
simulations demonstrates the accuracy, simplicity, and efficiency of the new method and
its applicability in a wide range of complicated fluid–structure interaction problems.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

The immersed boundary method was originated by Peskin in the last seventies [20,21] for the computational studies of
fluid–structure interaction (FSI) problems in a human heart. This method and its subsequent developments/extensions have
substantially expanded the applicability of the traditional finite difference methods relying upon simple Cartesian grids. In
Peskin’s method [20,21], the effect of flexible structures, such as heart valves and muscular wall, on the blood flow was rep-
resented by an external, singular force field in the Navier–Stokes equations to be solved in a regular domain including both
the flow field and the structures; and these structures were modeled by sets of spring-linked elements using a Lagrangian
representation. Discrete delta functions were used to connect the fluid flow and the immersed boundaries, i.e., to interpolate
the fluid velocity from the Eulerian grid points to the Lagrangian elements and to spread out the boundary forces from the
latter to the former. For flexible structures, the boundary forces were readily available using a generalized Hooke’s law from
the relative positions of the boundary elements depending on the boundary material properties. However, for a solid bound-
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ary, there is no relative displacement between neighboring boundary elements and the above method could not be applied in
a straightforward manner. Goldstein et al. [11] developed a feedback forcing strategy in a pseudo-spectral method using
ideas from control systems theory, in which the local forcing function would adapt itself through a feedback controller to
satisfy the desired velocity boundary conditions. Saiki and Biringen [23] implemented this feedback forcing scheme in a
fourth-order finite difference method to study low Reynolds number flows past stationary and moving circular cylinders.
They used a discrete hat function (area-weighted averaging) to transfer velocity/force information between the background
grid and the immersed boundary. A major disadvantage of the feedback forcing method is the overly restrictive time step
constraint resulting from the feedback mechanism, which contains two large-magnitude tuneable constants that make
the equations very stiff. This limitation was removed by Mohd-Yusof [18], who derived a direct forcing formulation by
imposing the velocity boundary condition at the immersed boundary ‘‘exactly’’ in the discrete-time equations without
any feedback adjustment. The resulting forcing term is no longer defined in the continuous space and associated with the
boundary force density function; hence there is no need to transfer force information from boundary elements to Eulerian
grid points and the immersed boundary discretization is no longer required. This approach was implemented in a pseudo-
spectral method in [18] and then applied in a finite difference method by Fadlun et al. [8]. With Mohd-Yusof’s derivation, it is
essentially a local solution reconstruction procedure to satisfy the desired boundary conditions at the immersed boundary
and an explicit forcing term was not required in the momentum equations at all, as detailed in [8]. On the other hand, the
direct forcing idea was also combined into some approaches [26,37,27,36] immediately related to Peskin’s method, to which
a discrete delta function is central for the information transfer between the Eulerian grid points and the Lagrangian elements.
In these approaches, the velocities at surrounding grid points are first interpolated using the discrete delta function to an
immersed boundary node; then, instead of using a constitutive law or feedback adjustment, the local forcing is determined
by directly requiring the velocity boundary condition at the boundary node to be satisfied after the forcing is applied; finally
the local forcing at each boundary node is distributed using the discrete delta function to surrounding grid points. In the
present study, we shall focus on a direct forcing approach making no use of the discrete delta functions. Nonetheless, the
extension of our FSI algorithm to those with discrete delta functions is straightforward and requires almost no modifications
to either the original immersed boundary solver or our algorithm, as will be clear later.

The direct forcing immersed boundary approaches have been well received among the developers and practitioners of
non-boundary conforming methods in the computational fluid dynamics (CFD) field, mainly because of the simplicity of
the concept and the ease of the implementation of the formulations. Initially, the developments were focused on stationary
immersed boundaries [8,15,25,2]; and very few were applied to problems with moving boundaries, due to the fact that the
implications of boundary movement on a fixed grid in a time-splitting scheme, such as the fractional-step method, were not
systematically addressed. (Note that this problem is not prominent in approaches using discrete delta functions as the forc-
ing is spread out over a few grid points across the immersed boundary.) Then Yang and Balaras [31] demonstrated that, non-
physical historical information may enter the flow field in a time step, when some grid points with reconstructed solutions at
the previous time step become normal fluid points, if no treatment is applied to recover the correct historical information at
these points. They proposed a field extension strategy that, at the end of each time step, the flow field is extended into the
grid points with non-physical values near the immersed boundary through extrapolations. A variety of examples ranging
from laminar to turbulent flows were given to show the accuracy and effectiveness of this approach. They further extended
it in [32] and then [33] to FSI problems with multiple rigid bodies using a strong coupling scheme in which the structural
dynamics was solved via Hamming’s fourth-order predictor–corrector algorithm. In their strong coupling scheme, the fluid
and the structure are treated as elements of a single dynamic system, and both sets of governing equations are integrated
simultaneously and interactively in the time domain. It is a very efficient iterative scheme as the number of iterations does
not change much with increased number of DOFs (degrees of freedom) of the structural part and the convergence of the
whole coupled system usually is reached within ten iterations. In addition, it is not limited to FSI problems with solid bodies,
for example, in [28], it was used to study the aerodynamic performance of a flexible hovering wing.

In general, the approaches discussed above for FSI problems (prescribed motion in [31] and predicted motion in [33],
respectively) are quite straightforward and efficient. One issue with the field extension strategy is that the definition of pres-
sure points requiring the extension operation is not as simple as that for velocity points. Instead of a simple geometric rela-
tionship, for instance, the closest grid points to the immersed boundary along grid lines (for velocity components, closest
grid points in the fluid phase and solid phase are defined as forcing points and pseudo forcing points, respectively, in
[31]), the status of all surrounding velocity points (four points in two-dimensional (2D) and six points in three-dimensional
(3D) cases, respectively) has to be used to find a pressure point that needs the extension operation. And such a point may be
in either the fluid or the solid phase, depending on the configuration of the immersed boundary and the grid layout. This is
not particularly convenient in terms of algorithm design and implementation. Furthermore, for grid points in the solid
requiring field extension operation, ambiguities may sometimes exist near sharp corners or under-resolved regions with re-
gard to the normal directions to the immersed boundary. To remove these ambiguities, significant amount of coding work is
needed and the clarity and efficiency of the algorithm may be affected.

On the other hand, in [31,33], the fluid force on an immersed boundary was evaluated through a surface force integration
procedure. Basically, the immersed boundary is first discretized into elements of size similar to the local grid spacing; then
the pressure value and velocity derivatives at the surface are obtained through extrapolation and one-sided differencing,
respectively; with the stress tensor and the geometric information (normal and area) available for each boundary element,
the surface force distribution and total force and moment can be evaluated directly. The overall procedure is very generalized
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