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Two-way solid fluid coupling techniques typically calculate fluid pressure forces that in 
turn drive the solid motion. However, when solids are in close proximity (e.g. touching 
or in contact), the fluid in the thin gap region between the solids is difficult to resolve 
with a background fluid grid. Although one might attempt to address this difficulty using 
an adaptive, body-fitted, or ALE fluid grid, the size of the fluid cells can shrink to zero 
as the bodies collide. The inability to apply pressure forces in a thin lubricated gap tends 
to make the solids stick together, since collision forces stop interpenetration but vanish 
when the solids are separating leaving the fluid pressure forces on the surface of the 
solid unbalanced in regard to the gap region. We address this problem by adding pressure 
degrees of freedom onto surfaces of rigid bodies, and subsequently using the resulting 
pressure forces to provide solid fluid coupling in the thin gap region. These pressure 
degrees of freedom readily resolve the tangential flow along the solid surface inside the gap 
and are two-way coupled to the pressure degrees of freedom on the grid allowing the fluid 
to freely flow into and out of the gap region. The two-way coupled system is formulated 
as a symmetric positive-definite matrix which is solved using the preconditioned conjugate 
gradient method. Additionally, we provide a mechanism for advecting tangential velocities 
on solid surfaces in the gap region by extending semi-Lagrangian advection onto a curved 
surface mesh where a codimension-one velocity field tangential to the surface is defined. 
We demonstrate the convergence of our method on a number of examples, such as 
underwater rigid body separation and collision in both two and three spatial dimensions 
where typical methods do not converge. Finally, we demonstrate that our method not only 
works for the aforementioned “wet” contact, but also works in conjunction with “dry” 
contact where there is no fluid in the gap between the solids.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Solid fluid coupling is important in many areas of science and engineering such as ship and aircraft design, the study 
of aneurysms and heart valves, etc. Numerical methods for modeling two-way solid fluid coupling can be loosely classified 
into two categories: partitioned and monolithic. Partitioned methods typically separately evolve the fluid and solids using 
the results of one as boundary conditions for the other in an alternating one-way coupled fashion, see e.g. [30,42,11]. 
Multiple iterations are typically required for stability, although there is no guarantee that iterations converge at all often 
forcing one to take excessively small time steps. Partitioned approaches can also suffer from other problems such as the 
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added-mass instability, see e.g. [4]. The main advantage of partitioned methods revolves around the ability to reuse existing 
code targeted to either solids-only or fluids-only problems. Monolithic methods aim to more fully two-way couple the fluid 
and solids alleviating a number of the aforementioned issues, see e.g. [25,20,2,27,33,12].

Our method is based on the method in [33] which evolves the explicitly treated components of both the fluid and 
solids independently and solves for the fluid pressures and the solid velocities together in a single monolithic two-way 
coupled system during the projection step. Whenever a line segment connecting two adjacent grid cell centers intersects 
a solid surface, a solid fluid coupling equal velocity constraint is enforced on the common grid face as long as at least 
one of the neighboring cells is a fluid cell. An interpolation operator is defined to interpolate solid velocities from solid 
surfaces to these constrained grid faces, and the transpose of this interpolation operator conservatively distributes fluid 
pressure impulses from these grid faces back to the solid surfaces. The gradient and divergence operators are discretized to 
be the negated transpose of each other resulting in a symmetric linear system, which can be made positive-definite in the 
deformable body case by factoring the damping matrix allowing for the use of fast linear solvers such as preconditioned 
conjugate gradients.

Although the method of [33] has been demonstrated to be a suitable approach for two-way coupling both rigid and 
deformable bodies (both volumetric and thin shell) with an incompressible fluid, we have observed erroneous results when 
solid bodies are in close proximity and multiple solid boundaries are rasterized to a single grid face. For example, when 
two rigid bodies are in contact, there will be grid faces in the gap between the two solids whose two adjacent grid cell 
centers are rasterized to different solids. The method of [33] does not assign solid fluid coupling constraints to such grid 
faces, since cells on the two sides of such a grid face are both inside solids. Thus, fluid pressure forces are absent inside 
this gap region producing nonphysical behavior. Although collision and contact stops the solids from interpenetrating, these 
inequality constraints vanish when the solids are separating leaving only an unbalanced fluid pressure force to spuriously 
push the solids back together. Moreover, in order for the solids to separate, fluid must flow into the thin gap region. Thus 
it is also important to model tangential flow in the gap region, incorporate the resulting velocity flux into the velocity 
divergence, and allow such flows to couple with the exterior flow on the grid.

It is instructive to consider how other approaches behave in the scenario where two solids come into contact with 
each other. One could use adaptive and/or moving body-fitted grids in order to increase the grid resolution in the gap 
region, for example solving with an Arbitrary Lagrangian–Eulerian (ALE) method, see e.g. [19,10]. However, as the solids 
approach and eventually touch, the grid resolution required for resolving the gap region will become infinite in finite time. 
As an interesting alternative to body-fitted grids, methods such as those proposed in [9,26] use a fixed-size Cartesian grid 
modifying the stencil near the solid boundary. In such methods, grid cell sizes will not approach zero as the solids come 
together because boundary conditions are enforced using ghost cells inside the solids. However, the ghost cells only work 
when there are real fluid cells for them to interact with, and all the real fluid cells disappear when solids come into close 
contact. Similarly, methods such as [3,17,18,36] which rely on cut cells that are merged with full cells to avoid accuracy and 
time step restrictions also cannot be applied when all the full cells vanish as the solids come into close contact. Fictitious 
domain (see e.g. [13]) and immersed boundary methods (see e.g. [28,29] and the references therein) intrinsically avoid 
the problem of vanishing or disappearing fluid grid cells by discretizing the fluid on every grid cell whether it is inside 
the solid or not. The fictitious domain method has an incompressibility constraint in the fluid region and a solidification 
constraint for the grid cells which are determined to be in the solid region. If two solids are in close proximity and both 
the incompressibility constraint and the solidification constraint are enforced precisely, the method lacks the degrees of 
freedom to represent the incompressible flow that allows fluid to flow into the gaps as the solids separate. On the other 
hand, relaxing the constraints even via numerical means could allow degrees of freedom between the two solids to become 
unsolidified and instead represent tangential fluid flow in the gap. However, this gives a much less precise description of 
the solid and may produce artifacts of its own. The immersed boundary method uses a smoothed out approximation of the 
Dirac delta function in order to define a forcing back and forth between the fluid and the solid, inherently more loosely 
enforcing the solidification constraint than using the fictitious domain method. Therefore, the immersed boundary method 
more readily allows the degrees of freedom between the two solids to model the necessary tangential flow allowing bodies 
to separate while immersed in the incompressible fluid. Accuracy on the other hand is another matter. This tangential flow 
will compete with the smeared out region where the immersed boundary method is attempting to constrain the motion of 
the underlying fluid degrees of freedom to follow the solid motion. This lack of accuracy can cause unwanted stress in the 
solid structure, and attempts to minimize this stress can stop the unwanted deformation but also stop the desired tangential 
flow.

In the framework of [33], we propose adding fluid pressure degrees of freedom to solid surfaces in order to provide 
fluid pressure forces in thin lubricated gap regions. These additional fluid pressure degrees of freedom are added to the 
particles of solid surface meshes which can be readily refined or coarsened according to the resolution needed for resolving 
the fluid flow in the gap. We only deal with volumetric rigid bodies in this paper and rasterize each rigid body as a 
closed hull consisting of both grid faces between the fluid and solids as well as grid faces between two different solids. 
We treat each grid face between two solids, where solid fluid coupling constraints are missing in [33], as two virtual faces 
sandwiching a virtual fluid cell in between. Additional solid fluid coupling constraints are added to these virtual faces, and 
the fluid pressure forces on these faces are computed using an interpolation operator that interpolates fluid pressures from 
solid surface pressure degree of freedom particles to virtual fluid cells. The transpose of this interpolation operator is then 
used to conservatively distribute the velocity flux through these virtual faces to pressure degree of freedom particles for 
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