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In this paper we construct numerical schemes to approximate linear transport equations 
with slab geometry by diffusion equations. We treat both the case of pure diffusive scaling 
and the case where kinetic and diffusive scalings coexist. The diffusion equations and 
their data are derived from asymptotic and layer analysis which allows general scattering 
kernels and general data. We apply the half-space solver in [20] to resolve the boundary 
layer equation and obtain the boundary data for the diffusion equation. The algorithms are 
validated by numerical experiments and also by error analysis for the pure diffusive scaling 
case.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Linear transport equations are widely used to model the interaction of particles with background media through various 
processes such as scattering, absorption, and emission. Many interesting physical systems exhibit heterogeneity that involve 
multiple temporal or spatial scales. In this paper we focus on efficient numerical simulations for linear transport equations 
which exhibit diffusive regime in part of or the whole domain. More precisely, with slab geometry, the particle density 
function f in our model depends on a one-dimensional spatial variable x ∈ [a, b] and a one-dimensional angular variable 
μ ∈ [−1, 1]. The transport equation has the reduced form

ε ∂t f + μ∂x f + σ(x)

ε
L f = 0,

f |x=a = φa(t,μ), μ > 0,

f |x=b = φb(t,μ), μ < 0,

f |t=0 = φ0(x,μ), (1.1)
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where φa , φb are given incoming data at the boundary and φ0 is the given initial data. The collision operator considered in 
this paper has the form

L f = f −
1∫

−1

κ(μ,μ′) f (μ′)dμ′, (1.2)

where dμ′ is the regular Lebesgue measure. The scattering kernel κ satisfies that

κ ≥ 0, κ(μ,μ′) = κ(μ′,μ),

1∫
−1

κ(μ,μ′)dμ′ = 1 for all μ ∈ [−1,1].

The parameter ε is the mean free path which is small compared with typical macroscopic length scale in the diffusion 
region. We will consider two cases for the coefficient σ(x):

1) σ(x) = 1 for all x ∈ [a, b] such that we have diffusive scaling over the whole domain;
2) the system contains two scales such that

σ(x) =
{

ε, x ∈ [a, xm],
1, x ∈ [xm,b],

for some xm ∈ (a, b), such that we have a kinetic scaling on the left domain and a diffusive scaling on the right. These 
two regions are coupled together at the interface x = xm .

We note that while we focus on system (1.1) which is one-dimensional in both the spatial and the angular variables, it is 
possible to extend to higher dimensional systems with simple geometry. Particular examples include the upper half-space
(Rn)+ in the pure diffusion case and flat interface in the kinetic–fluid coupling case. We also comment that our method 
can be applied to general linear or linearized kinetic equations such as the linearized Boltzmann equations.

In this paper we aim at designing efficient multiscale algorithms for (1.1) based on asymptotic analysis and domain 
decomposition. It is well known that direct simulations of the transport equation in the diffusion region are usually rather 
expensive thus unfavorable. On the other hand, diffusion equations with proper data can provide good approximations to the 
kinetic equation when ε is small (see for example [12,13]). We will follow the latter route and use diffusion approximations 
wherever applicable. The main difficulty of this method lies in obtaining accurate matching boundary and initial conditions 
for the diffusion equation. The easier part is to obtain the initial data: at the leading order, it can be derived by directly 
projecting the given kinetic initial state onto the null space of the scattering operator L.

Finding the boundary data on the other hand is more involved both asymptotically and numerically. For given kinetic 
incoming data, one can show by formal asymptotic analysis that the matching boundary data of the diffusion equation is 
determined by the end-state of the solution to a half-space equation. Therefore, accurate solvers of half-space equations 
will provide crucial tools for our approximation. Having this in mind, we developed a numerical method in [20] that can 
efficiently solve the half-space equations. In the current paper, we will apply this half-space solver to obtain the boundary 
data for the diffusion equations numerically.

In summary, in the numerical scheme for the pure diffusion case, we will resolve the boundary layer equations at 
the two endpoints x = a, b to retrieve boundary data for the diffusion equation and use the projected kinetic initial data 
as its initial condition. We will compare thus-obtained diffusion solution to the solution of kinetic equation and show 
convergence rates in terms of ε . We will also derive some formal error estimates in the L2-spaces. The error analysis 
follows the classical methodology of constructing approximate solution that involves all the layers [4]. Since we are studying 
time-dependent case, normally there will be three types of layers involved: boundary, initial, and initial–boundary layers. 
The major assumption that we make here is to assume that the initial–boundary layer equation is well-posed and its 
solution decays at least as fast as the reciprocal of time. The initial and boundary layers on the other hand can be shown to 
have an exponential decay. We will treat the general cases where the derived data for the diffusion equation are allowed to 
be incompatible so that the derivatives of the heat solution can be unbounded.

In the formal asymptotic analysis of the kinetic-diffusion coupling case with general initial data, there are boundary, 
initial, and initial–boundary layers that form at the interface in the diffusion region. Solutions to these layers will have 
influence on the kinetic part. Our numerical scheme, however, only takes the boundary-layer feedback into account and 
ignores the other feedbacks from the initial and initial–boundary layers at the interface. This way we can decouple the 
kinetic and diffusion parts at the leading order. This decoupling idea is a feature of the domain-decomposition method 
developed in [13]. In particular, at the leading order, the kinetic part satisfies a closed system whose boundary condition at 
the interface is given by the Albedo operator defined in (2.18). By this we can fully solve the leading order decoupled kinetic 
equation in the kinetic region. Using the solution from the kinetic regime at the interface as the given incoming data, we 
then approximate the kinetic equation in the diffusion region by the diffusion equation via the same scheme for the pure 
diffusion case. We comment that although we do not have rigorous analysis for estimating the errors induced by ignoring 
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