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This paper presents a high-order discontinuous Galerkin (DG) method based on a multi-
dimensional gas kinetic evolution model for viscous flow computations. Generally, the 
DG methods for equations with higher order derivatives must transform the equations 
into a first order system in order to avoid the so-called “non-conforming problem”. In 
the traditional DG framework, the inviscid and viscous fluxes are numerically treated 
differently. Differently from the traditional DG approaches, the current method adopts 
a kinetic evolution model for both inviscid and viscous flux evaluations uniformly. By 
using a multi-dimensional gas kinetic formulation, we can obtain a spatial and temporal 
dependent gas distribution function for the flux integration inside the cell and at the cell 
interface, which is distinguishable from the Gaussian Quadrature point flux evaluation in 
the traditional DG method. Besides the initial higher order non-equilibrium states inside 
each control volume, a Linear Least Square (LLS) method is used for the reconstruction 
of smooth distributions of macroscopic flow variables around each cell interface in order 
to construct the corresponding equilibrium state. Instead of separating the space and time 
integrations and using the multistage Runge–Kutta time stepping method for time accuracy, 
the current method integrates the flux function in space and time analytically, which 
subsequently saves the computational time. Many test cases in two and three dimensions, 
which include high Mach number compressible viscous and heat conducting flows and 
the low speed high Reynolds number laminar flows, are presented to demonstrate the 
performance of the current scheme.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In order to improve the reliability of numerical methods and present accurate flow computations, the development of 
high order (>2nd) schemes has been under intensive investigation recently. Most finite volume (FV) methods are based 
on the piecewise constant representation of flow variables and resort the reconstruction techniques to obtain high order 
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accuracy in space. Generally these methods are effective for structured meshes, but may face reconstruction problem on 
arbitrary grids in the multidimensional unstructured mesh cases due to the use of extended stencils. In order to avoid 
difficulties in the reconstruction, one possible way is to develop compact methods, and the discontinuous Galerkin (DG) 
method [1] becomes one of these idealized choices. For the DG method, the higher accuracy is achieved by means of higher 
order polynomial approximation inside each cell. Only the information from adjacent cells with common cell interfaces is
needed for the update of the degree of freedom of the cell. Therefore, the DG method can deliver higher order accurate 
solutions without solely relying on the reconstruction techniques and large stencils.

The DG method was firstly introduced by Reed and Hill [2] and applied to a linear transport equation by Lesaint and 
Raviart [3]. Chavent and Salzano [4] firstly adapted the method to a nonlinear case. Cockburn and Shu [1,5] further devel-
oped the method in a series of papers, in which a framework to solve the nonlinear time dependent hyperbolic conservation 
laws was established. For convection–diffusion equations, the DG method proposed by Cockburn and Shu [1,5] cannot be 
directly applied, because the discontinuities appearing at the cell interface are not regular enough to handle higher order 
derivatives [6]. The alternative formulation proposed by Bassi and Rebay [7] is to first transform the convection–diffusion 
equations into a first order system. This technique successfully extends the DG method to the Navier–Stokes (NS) flow 
computation. Cockburn and Shu [8] proposed a local discontinuous Galerkin method based on a similar formulation.

Alternatively, the Navier–Stokes solutions can be recovered using a gas-kinetic formulation [9–13], where a kinetic flux 
function including both inviscid and viscous terms can be obtained in the kinetic evolution model. In the gas kinetic scheme, 
the fluxes are constructed based on the integral solution of the gas kinetic Bhatnagar–Gross–Krook (BGK) model, which 
presents a multiscale evolution process from a non-equilibrium to an equilibrium state, with the inclusion of time evolution 
of both flow variables and their derivatives. Different from the Riemann problem, the flow dynamics from a higher order 
initial reconstruction is explicitly followed. Xu [12] firstly proposed a one dimensional DG method by using a 2nd order BGK 
scheme for the flux computation. Liu and Xu [9] adopted the 2nd order BGK scheme on each Gaussian Quadrature point, 
where the directional splitting method is used for the 2D cases. Ni et al. [11] and Luo et al. [10] also used the 2nd order 
BGK scheme for the flux evaluation. In this paper, we will use a multi-dimensional 3rd order gas-kinetic BGK scheme, which 
is similar with the finite volume BGK scheme [14], to evaluate the fluxes both inside a cell and at a cell interface. Based on 
the multi-dimensional gas kinetic formulation, a spatial and temporal dependent gas distribution function can be evaluated 
explicitly, which can be integrated analytically in both space and time without using the integration formula based on the 
Gaussian Quadrature points. In the current approach, an LLS method is used for the equilibrium state construction around 
a cell interface, which is approached by the initial non-equilibrium state in the time evolution process.

The paper is organized as follows. Section 2 is the construction of the numerical method, which is composed of the gas 
kinetic discontinuous Galerkin scheme, the gas distribution function construction, and an LLS method for the equilibrium 
state construction. Section 3 shows some numerical examples and the results. The last section draws the conclusion.

2. Numerical method

2.1. Gas kinetic discontinuous Galerkin scheme

A 3D gas-kinetic BGK model is
∂ f

∂t
+ �u • ∇ f = g − f

τ
, (1)

where �u = (u, v, w) is the particle velocity vector, f is the gas distribution function, g is the equilibrium state approached 
by f , ∇ f is the gradient of f with respect to x = (x, y, z), τ is the particle collision time which is related to the viscosity 
and heat conduction coefficients, and t is the physical time.

The equilibrium state is a Maxwellian distribution,

g = ρ

(
λ

π

) K+3
2

e−λ[(u−U )2+(v−V )2+(w−W )2+ξ2], (2)

in which ρ is the density, U , V and W are the macroscopic velocity in x-, y- and z-direction, and λ is related to the 
gas temperature T by λ = m/2kT , where m is the molecular mass and k is the Boltzmann constant. The total number of 
degree of freedom K in the internal variable ξ is equal to (5 − 3γ )/(γ − 1) and γ is the specific heat ratio. In the above 
equilibrium state g , the internal variable ξ2 is equal to ξ2 = ξ2

1 + ξ2
2 + · · · + ξ2

K . The relation between the macroscopic 
conservative variables and the distribution function is

Q = (ρ,ρU ,ρV ,ρW ,ρE)T =
∫

ψ f dΞ =
∫

ψ gdΞ, (3)

where the vector of moments ψ is

ψ =
(

1, u, v, w,
1

2

(
u2 + v2 + w2 + ξ2))T

, (4)

and dΞ = dudvdwdξ1dξ2 · · ·dξK is the volume element in the phase space.
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