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A formulation for sensitivity analysis of fully coupled time-dependent aeroelastic problems 
is given in this paper. Both forward sensitivity and adjoint sensitivity formulations are 
derived that correspond to analogues of the fully coupled non-linear aeroelastic analysis 
problem. Both sensitivity analysis formulations make use of the same iterative disciplinary 
solution techniques used for analysis, and make use of an analogous coupling strategy. 
The information passed between fluid and structural solvers is dimensionally equivalent in 
all cases, enabling the use of the same data structures for analysis, forward and adjoint 
problems. The fully coupled adjoint formulation is then used to perform rotor blade 
design optimization for a four bladed HART2 rotor in hover conditions started impulsively 
from rest. The effect of time step size and mesh resolution on optimization results is 
investigated.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In the recent past, the use of adjoint equations has become a popular approach for solving aerodynamic design opti-
mization problems based on computational fluid dynamics (CFD) [1–9]. Adjoint equations are a very powerful tool in the 
sense that they allow the computation of sensitivity derivatives of an objective function to a set of given inputs at a cost 
which is essentially independent of the number of inputs. This is in contrast to the brute-force finite-difference method, 
where each input or design variable has to be perturbed individually to obtain a corresponding effect on the output. This 
is a tedious and costly process which is impractical when there are a large number of design variables or inputs. Another 
major shortcoming of the finite-difference method is that it suffers from step-size limitations which affect the accuracy of 
the computed gradients.

While the use of adjoint equations is now fairly well established in steady-state shape optimization, only recently have 
inroads been made into extending them to unsteady flow problems. Unsteady discrete adjoint-based aerodynamic shape 
optimization was initially demonstrated in the context of two-dimensional problems by Mani and Mavriplis [10] and also 
by Rumpfkeil and Zingg [11]. Preliminary demonstration of the method’s feasibility in three-dimensional problems was done 
by Mavriplis [12]. Full implementation in a general sense and application to large scale problems involving helicopter rotors 
was then carried out by Nielsen et al. in the NASA FUN3D code [13–15].
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Nomenclature

Acronyms

CFD Computational Fluid Dynamics
CSD Computational Structural Dynamics

Symbols

a Speed of sound . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

A Rotor disk area, π R2 . . . . . . . . . . . . . . . . . . . . . . . m2

c Rotor chord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
C D 2-D drag coefficient
Cd0 Profile drag coefficient
CL 2-D lift coefficient
CM 2-D pitching moment coefficient
C p Pressure coefficient
C f Skin friction coefficient
CT Rotor thrust coefficient, T /(ρ A�2 R2)

C Q Rotor shaft torque coefficient, Q /(ρ A�2 R3)

r Radial distance of a rotor spanwise station. m
R Rotor radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Re Reynolds number, V c/ν
V Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

U∞ Freestream velocity . . . . . . . . . . . . . . . . . . . . . . ft s−1

M Mach number, V /a
M∞ Freestream Mach number, U∞/a
Mtip Rotor tip Mach number, Utip/a
α Sectional angle of attack . . . . . . . . . . . . . . . . . . deg
αs Shaft tilt angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . deg
θ0 Collective pitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . deg
ν Kinematic viscosity . . . . . . . . . . . . . . . . . . . . m2 s−1

ρ Flow density . . . . . . . . . . . . . . . . . . . . . . . . slugs m−3

ψ Azimuth angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . deg
� Rotor rotational speed . . . . . . . . . . . . . . . . . rad s−1

	t Time step size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . deg

Since engineering optimization is an inherently multidisciplinary endeavor, the next logical step involves extending 
adjoint methods to multidisciplinary simulations and using the obtained sensitivities for driving multidisciplinary opti-
mizations. In the context of fixed and especially rotary wing aircraft, aeroelastic coupling effects can be very important and 
must be considered in the context of a successful optimization strategy.

The coupling of computational fluid dynamics (CFD) and computational structural dynamics (CSD) and the use of sensi-
tivity analysis on such a system has been addressed in the past primarily from a steady-state standpoint [16,17]. Until now, 
relatively little work has been done addressing unsteady aeroelastic optimization problems, mainly due to complexities in 
the linearization of coupled time-dependent systems. In previous work [18], we have derived the fully coupled adjoint 
problem for a two-dimensional aeroelastic airfoil problem and demonstrated the use of adjoint-derived sensitivities for per-
forming time-dependent aeroelastic optimization including flutter suppression. This formulation was subsequently extended 
to time-dependent three-dimensional aeroelastic problems in Refs. [19–21]. This work built upon a previously demonstrated 
time-dependent aerodynamic optimization capability that was applied to helicopter rotors in Ref. [22] through the ad-
dition of a Hodges–Dowell type beam finite-element model to simulate the rotor structure, and the development of the 
fully coupled discrete adjoint of the resulting aeroelastic system. This paper recapitulates the formulation, implementation, 
and verification of the adjoint sensitivity analysis approach for time dependent coupled aeroelastic problems developed in 
Ref. [20]. In addition, the current work also demonstrates the effectiveness of using this approach for performing aeroelastic 
optimization of a representative rotorcraft configuration.

Because high fidelity time-dependent optimization represents a computationally intensive approach, obtaining a suitable 
optimization result with manageable computational requirements is an important consideration. Therefore, a particular as-
pect of this work considers the suitability of optimization results obtained on relatively coarse meshes and using larger time 
steps, in order to reduce overall computational effort.

2. Aerodynamic analysis formulation

2.1. Flow solver analysis formulation

The base flow solver used in this work is the NSU3D unstructured mesh Reynolds-averaged Navier–Stokes solver. NSU3D 
has been widely validated for steady-state and time-dependent flows and contains a discrete tangent and adjoint sensitivity 
capability which has been demonstrated previously for optimization of steady-state and time-dependent flow problems. 
As such, only a concise description of these formulations will be given in this paper, with additional details available in 
previous references [12,22,23]. The flow solver is based on the conservative form of the Navier–Stokes equations which may 
be written as:

∂U(x, t)

∂t
+ ∇ · F(U) = 0 (1)

For moving mesh problems these are written in arbitrary Lagrangian–Eulerian (ALE) form as:

∂V U

∂t
+

∫
dB(t)

[F(U) − ẋU] · ndB = 0 (2)
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