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grid results in a discrete compact filter. The proposed filter is significantly less dissipative
than Germano's differential filter, while completely suppresses fluctuations at the grid cut-
off frequency. Manufactured solutions were used to verify the performance of the proposed
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1. Introduction

Large Eddy Simulation (LES) of turbulent flows has found widespread applications both in academia and industry. The
idea behind Large Eddy Simulations (LES) is to decompose the flow properties into a large-scale or resolved component, ¢,
and a small-scale or subgrid component, ¢sg [1]. This decomposition is achieved by applying a low pass, spatial filter. The
filter width usually corresponds to the smallest scale resolved on the grid.

It is customary to implicitly apply the filter by solving the filtered Navier-Stokes equations with a presumed subgrid-scale
stress model. This procedure is known as implicit filtering [2]. In implicit filtering, the filter function is not necessarily known
as it is implicitly defined by the subgrid model and the numerical grid [2-4]. Implicit filters, therefore, do not allow the
control of numerical errors caused by truncation errors and aliasing of high frequencies [5]. Moreover, the filter spectral
distribution and its energy dissipation cannot be quantified [2,6,7].

These problems can be addressed by using LES methodologies based on explicit filtering of the flow field, namely the
Approximate Deconvolution Model (ADM) [7-10], and the relaxation filtering (RF) technique [11-16]. In these methods,
filtering is an explicit part of the numerical simulation to prevent the energy accumulation at the grid cut-off. Since the
filter operator is known, the energy dissipation associated with filtering can be quantified. So far, successful applications of
these methods have only been reported on structured grids, for which a discrete high-order filter operator can be easily
constructed. Examples include the use of Lele’s compact filters [17] by Visbal and Rizetta [18], Rizzeta et al. [19], Uzun and
Hussaini [20,21], as well as explicit discrete filters by Bogey and Bailly [12,13], Berland et al. [15], and Fauconnier et al. [16].
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Nomenclature
h Local filter width B Filter parameter for grid cut-off frequency in
] Jacobian matrix the computational space
k Magnitude of wavenumber Bij Components of grid cut-off frequency parame-
k Three dimensional wavenumber vector ter in the physical space
mij Component of filter left-hand-side mass ma- 8 Germano’s filter radius
trix ¢ Unfiltered scalar variable
njj Component of filter right-hand-side mass ma- @ Filtered scalar variable
trix &n Spatial coordinates in the two-dimensional
N; Shape function for local node j computational space
T (k) Filter transfer function Q Arbitrary element in the physical space
X,y Spatial coordinates in the physical space Q Transformed element in the computational
Creek space, a.k.a. reference element
o Filter parameter for filter cut-off frequency in Subscript
the computational space cnt Continuous
ajj Components of filter cut-off frequency param- fc Filter cut-off
eter in the physical space g Grid cut-off
af Filter parameter for compact notation Gr Germano’s

The extension of discrete filter operators to unstructured grids is not straightforward which has hampered the use of
ADM and RF for LES on unstructured grids. Marsden et al. [22] and Haselbacher and Vasilyev [23] suggested explicit filtering
procedures for unstructured grids based on a weighted sum of neighbouring node values. Both of these methods have
drawbacks which have hampered their application. In particular, it is not possible to ensure the stability of the filter operator
(i.e. G(k) <1,Vk) in a general mesh topology. Moreover, the spectral distribution of the filter kernel is strongly dependent
on the distribution of surrounding nodes. The filter of Marsden et al. [22] also requires the careful selection of a subset of
neighbouring nodes which might not exist in the presence of skewed and stretched elements [24].

Another approach for the design of discrete filter kernels is the use of differential operators. First introduced in the 1980’s
by Germano [25,26], differential filters for LES applications have been used by Mullen and Fischer [27], You et al. [28], and
Bose et al. [24] Germano’s differential filter is defined by the following differential equation:
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where ¢ and ¢ are unfiltered and filtered variables, respectively, and the filtering parameter, 8, controls the filter’s attenua-
tion. Germano'’s filter transfer function in the Fourier domain is given by
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where k is the wavenumber. Germano’s filter is stable (i.e. |Tg;| < 1) for all values of wavenumber, and is a useful tool for
theoretical analysis [29]. However, Germano’s filter has some limitations for practical applications in LES. In particular, its
transfer function, Eq. (2), never reaches zero in the discrete form. Therefore, Germano’s filter does not completely remove the
energy content of the subgrid scales. This means that Germano’s filter, if used without any additional dissipation or subgrid
model, cannot prevent energy accumulation near the grid cut-off, which eventually destabilizes the numerical simulation.
Moreover, Germano’s filter is rather dissipative at low to moderate wavenumbers, corresponding to resolved scales.

The aforementioned shortcomings of Germano’s filter are addressed by a new differential filter proposed in this paper.
The transfer function of the filter is designed to remain close to unity over a wide range of wavenumbers, resulting in
minimal dissipation over resolved scales, and to decline sharply to zero near the grid cut-off in order to completely remove
the subgrid energy content.

The paper is organized as follows. A brief discussion of the definition of grid cut-off wavenumber is provided in Section 2.
The new filter is introduced in Section 3. In Section 4, it is shown that a Galerkin discretization of the filter in one dimension
results in the second order compact filter introduced by Lele [17]. The spectral accuracy of the proposed filter is compared
with that of other conventionally used models in Section 5. The derivation of the filter for two-dimensional triangular
elements is presented in Section 6. In Section 7, numerical examples are used to illustrate the characteristics of the proposed
filter. Conclusions are drawn in Section 8.
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