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In 2002, Després and Lagoutière [17] proposed a low-diffusive advection scheme for pure 
transport equation problems, which is particularly accurate for step-shaped solutions, 
and thus suited for interface tracking procedure by a color function. This has been 
extended by Kokh and Lagoutière [28] in the context of compressible multifluid flows 
using a five-equation model. In this paper, we explore a simplified variant approach for 
gas–liquid three-equation models. The Eulerian numerical scheme has two ingredients: 
a robust remapped Lagrange solver for the solution of the volume-averaged equations, 
and a low diffusive compressive scheme for the advection of the gas mass fraction. 
Numerical experiments show the performance of the computational approach on various 
flow reference problems: dam break, sloshing of a tank filled with water, water–water 
impact and finally a case of Rayleigh–Taylor instability. One of the advantages of the 
present interface capturing solver is its natural implementation on parallel processors or 
computers.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Simulation of free surface flows knows an increasing interest as an essential predictive tool for innovative engineering
designs into many fields of applications, and a complementary analysis tool compared to physical experiments. This includes 
for instance the safety study of water dams, tsunamis, the extraction of offshore petroleum, the sizing of Liquified Natural 
Gas (LNG) carriers, processes of phase separation, waste water treatment, flocculation processes, bio-engineering, medical 
applications, etc. The evolution of the interfaces between phases and the consecutive complex dynamics needs to be sim-
ulated for the understanding of the flows and the process optimization in the industrial case. For gas–liquid applications 
involving fast dynamics, beyond quantities of interest, numerical models have to be able to capture most of the flow features 
that drive the dynamics, e.g.:

• wave formation and wave breaking;
• wall wave impacts, local pressure peaks and pressure loadings;
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• formation of air pockets;
• ejection, fragmentation of liquid droplets;
• Archimedes buoyancy effect with rising of bubbles and fall of droplets;
• effects of gas compressibility inducing a gas-to-liquid response by a pressure wave, etc.

In this paper, we consider immiscible gas–liquid two-phase flow problems. The strong ratio of mass density between gas 
and liquid (typically 1:1000) is known to be a source of numerical stiffness and numerical instability. Therefore robust 
computational approaches supporting high density ratio have to be considered. Among the family of conservative Finite 
Volume methods (FVM), the Lagrange-remapped solvers (see e.g. [42,45,6,4,25,2]) provide both robustness and stability 
with achievement of mathematical properties of positiveness and entropy compatibility.

Lagrange-remap numerical schemes (also referred to as Euler–Lagrange schemes) are a particular family of Eulerian FVM 
where, at each time step, the equations are solved according to a Lagrangian evolution with a mesh that is convected by 
the flow itself, then the “Lagrange solutions” are remapped on the initial mesh into a conservative way by estimating both 
fluxed mass and momentum. Because of the Lagrangian step of these methods, code coupling or coupling of different physics 
is made easier against conventional FV methods. Moreover, the Lagrangian description is very practical for multi-material 
flows of multi-phase flows because we are a natural control of the fluxed quantities material-by-material. Lagrange and 
Lagrange-remap solvers still know strong developments today with major contributions as e.g. energy-preserving compatible 
schemes for staggered methods [11], collocated variables and cell-centered entropy-satisfying schemes, see [18,32,12].

In this paper, we rather consider a simpler staggered Lagrange-remap solver with a direction-by-direction remapping. 
More precisely, the 2D multidimensional Lagrange step (operator L�t

xy ) completely solves the fluid equations while an op-
erator splitting alternating direction (AD) for the projection (operators Rx and Ry respectively) is used to interpolate on 
the reference Cartesian Eulerian grid into a conservative manner, involving convective flux balances. Symmetrized operator 
splitting can be used to ensure second order accuracy. Both linear and nonlinear numerical stabilities are ensured by the 
use of standard pseudo-viscosity (viscous pressure) terms, detailed into Appendix B at the end of this paper. Actually, we 
use this simple Euler solver because of its simplicity of code implementation and because it can be vectorized/parallelized 
into a natural manner. Moreover, the aim of this paper is not about the hydrodynamics solver: the article mostly focuses on 
numerical antidiffusive methods for interface capturing, as part of a global multifluid hydrodynamics solver. At the present 
time, the antidiffusive approaches assume a direction-by-direction remapping which leads to a simpler derivation of the 
antidiffusive fluxes.

The issue of an interface tracking/capturing algorithm providing expected properties like robustness, accuracy, conserva-
tion of volume and mass while not being too much computationally intensive is still the object of today’s active research. 
Pure Lagrangian approaches like Smoothed Particle Hydrodynamics (SPH) methods naturally captures the moving interfaces 
because each macro-particle moves with the flow. Each particle is also attached to a given material with its own equation of 
state (EOS). For liquid–gas flows, we have liquid particles and gas particles and the interface is nothing else but the discrete 
interface separating liquid particles from gas particles. In the last decade, we have seen in the literature major contributions 
of improvement in the SPH world with improved accuracy, stability, and ability to tackle multiphase flow problems with 
high density ratios for violent flow applications, see for example [13,33,24]. Despite these improvements, SPH still know 
some issues. Moreover parallelization techniques for SPH are quite technical and require a great expertise (as dealing with 
strong density ratio between phases). That’s why we rather choose a more classical computational approach.

Notice also that there are also mesh-based Lagrangian methods [32,12]. But for flows with large deformations, cells may 
become degenerate, and both regularization or remapping procedures are needed.

For Eulerian methods, the family of interface tracking methods try to reconstruct the free boundary according to some 
tracking procedure (level set methods [38] for example). Interface reconstruction methods try to reconstruct a moving 
interface according to some incomplete information: volume-of-fluid (VOF) methods [36,46] or MOF (Moment-of-Fluid) 
methods [20]. The family of interface capturing methods involves at the continuous level the transport equation of an 
indicator function that distinguishes the location of the different materials:

∂t z + u · ∇z = 0, z ∈ {0,1}
(where u is the velocity and z the color function or a phase indicator), expressing that the interface property between the 
two phases is advected with the local fluid velocity. From the numerical point of view, finite volume cells may host different 
materials. The so-called “mixed cells” need an additional closure but on the other hand the mass fraction cg ∈ [0, 1] of the 
gas fluid may be used as the numerical indicator function:

∂tcg + u · ∇cg = 0, cg ∈ [0,1].
It can be set up in conservative form in order to conserve the gas mass:

∂t(ρcg) + ∇ · (ρcg u) = 0

with ρ representing the mean cell “mixture” density, but of course it induces a “diffuse” interface, which has to be kept as 
less diffusive as possible. Let us emphasize that this diffuse feature is only a pure numerical artefact. This kind of methods 
uses more or less sophistication levels including high-order schemes, compressive flux limiters, artificial compression stages, 
local adaptive mesh refinement (AMR) [7], a posteriori methods in which an anti-diffusion phase is added after the projection 
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