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We derive new, explicit representations for the solution to the scalar wave equation in 
the exterior of a sphere, subject to either Dirichlet or Robin boundary conditions. Our 
formula leads to a stable and high-order numerical scheme that permits the evaluation of 
the solution at an arbitrary target, without the use of a spatial grid and without numerical 
dispersion error. In the process, we correct some errors in the analytic literature concerning 
the asymptotic behavior of the logarithmic derivative of the spherical modified Hankel 
function. We illustrate the performance of the method with several numerical examples.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider a simple problem, namely the solution of the scalar wave equation

utt = �u, t > 0, (1)

subject to homogeneous initial conditions

u(r, θ,φ,0) = 0, ut(r, θ,φ,0) = 0 (2)

in the exterior of the unit sphere. Here, (r, θ, φ) denote the spherical coordinates of a point in R3 with r > 1. Standard 
textbooks on mathematical physics (such as [5,11]) present exact solutions for the time-harmonic cases governed by the 
Helmholtz equation, but generally fail to discuss the difficulties associated with the fully time-dependent case (1). As we 
shall see, it is a nontrivial matter to develop closed-form solutions, and a surprisingly subtle matter to develop solutions 
that can be computed without catastrophic cancellation.
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In this paper, we restrict our attention to boundary value problems with Dirichlet or Robin conditions. We consider the 
Dirichlet problem first, and assume we are given data on the boundary of the unit sphere of the form:

u(1, θ,φ, t) = f (θ,φ, t). (3)

It is natural to begin by expanding both u and f in terms of spherical harmonics.

u(r, θ,φ, t) =
∞∑

n=0

n∑
m=−n

unm(r, t)Ynm(θ,φ),

f (θ,φ, t) =
∞∑

n=0

n∑
m=−n

fnm(t)Ynm(θ,φ), (4)

where

Y m
n (θ,φ) =

√
2n + 1

4π

√
(n − |m|)!
(n + |m|)! P |m|

n (cos θ)eimφ , (5)

Pn(x) is the standard Legendre polynomial of degree n, and the associated Legendre functions Pm
n are defined by the 

Rodrigues’ formula

Pm
n (x) = (−1)m(

1 − x2)m/2 dm

dxm
Pn(x).

We let ûnm(r, s) and f̂nm(s) denote the Laplace transforms of unm(r, t) and fnm(t):

ûnm(r, s) =
∞∫

0

e−st unm(r, t)dt, (6)

f̂nm(s) =
∞∫

0

e−st fnm(t)dt. (7)

It is straightforward [1] to see that ûnm(r, s) satisfies the linear second order ordinary differential equation (ODE)

r2ûnm(r, s)rr + 2rûnm(r, s)r − [
s2r2 + n(n + 1)

]
ûnm(r, s) = 0,

for which the decaying solution as r → ∞ is the modified spherical Hankel function kn(sr). It follows that

ûnm(r, s) = cnm(s)kn(sr).

Matching boundary data on the unit sphere, we have cnm(s) = f̂nm(s)/kn(s), and

ûnm(r, s) = kn(sr)

kn(s)
f̂nm(s). (8)

The remaining difficulty is that we have an explicit solution in the Laplace transform domain, but we seek the solution 
in the time domain. For this, we write the right hand side of (8) in a form for which the inverse Laplace transform can 
carried out analytically. First, from [1,10,12], we have

kn(z) = pn(z)

zn+1
e−z =

∏n
j=1(z − αn, j)

zn+1
e−z, (9)

where αn, j ( j = 1, . . . , n) are the simple roots of kn lying on the open left half of the complex plane (see Fig. 5 for a plot of 
the zeros of k10 and k11). Thus,

kn(sr)

kn(s)
= 1

r
e−s(r−1)

n∏
j=1

s − 1
r αn, j

s − αn, j

= 1

r
e−s(r−1)

(
1 +

n∑
j=1

an, j(r)

s − αn, j

)
, (10)

where the second equality follows from an expansion using partial fractions and the coefficients an, j are given from the 
residue theorem by the formula:
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