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In this paper, a high order finite difference scheme for a two dimensional fractional Klein–
Gordon equation subject to Neumann boundary conditions is proposed. The difficulty 
induced by the nonlinear term and the Neumann conditions is carefully handled in 
the proposed scheme. The stability and convergence of the finite difference scheme are 
analyzed using the matrix form of the scheme. Numerical examples are provided to 
demonstrate the theoretical results.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Klein–Gordon equations have wide applications in quantum mechanics and condensed matter physics. Interested readers 
can refer to [1–3] for practical applications of Klein–Gordon equations in superconductors, motion of pendule and disloca-
tions in crystals.

In this paper, we study Klein–Gordon equations with time fractional derivatives. Fractional derivatives are generalizations 
of classical ones. We remark that the generalization is not just for pure mathematical purpose. Actually, it is found that sub-
diffusion process can be described more accurately by using fractional derivatives. The books [4,5] give theoretical analysis 
for fractional differential equations, while our study concentrates on their numerical methods. Since fractional derivatives 
have historical dependence, this makes deriving numerical schemes for fractional differential equations a challenging prob-
lem.

We review briefly here some works that are related to our current study. In [6], Sun and Wu constructed a differ-
ence scheme to solve the fractional diffusion-wave equation, which has been proved to be unconditionally stable. Recently, 
Zhuang et al. [7] investigated the stability and convergence of an implicit numerical method for the anomalous sub-diffusion 
equation by the energy method. A compact finite difference scheme for this equation was then presented by Cui in [8], 
where the local truncation error and the stability were studied by the Fourier method. By a transformation of this problem, 
Gao and Sun [9] proposed a high order scheme to improve the temporal convergence order. Lately, based on [9], Ren et al. 
established two compact schemes for fractional diffusion equations with Neumann boundary conditions in [10,11]. A high 
order compact difference scheme for the fractional Cattaneo equation was derived in [12]. In the past few years, Dehghan 

✩ This research is supported by the Macao Science and Technology Development Fund FDCT/001/2013/A and the grant MYRG086(Y2-L2)-FST12-VSW from 
University of Macau.

* Corresponding author.
E-mail addresses: swvong@umac.mo (S. Vong), zhibowangok@gmail.com (Z. Wang).

http://dx.doi.org/10.1016/j.jcp.2014.06.022
0021-9991/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2014.06.022
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:swvong@umac.mo
mailto:zhibowangok@gmail.com
http://dx.doi.org/10.1016/j.jcp.2014.06.022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2014.06.022&domain=pdf


S. Vong, Z. Wang / Journal of Computational Physics 274 (2014) 268–282 269

et al. have established many results in this area [13–20]. Especially, in [20], they proposed high order difference schemes 
for fractional Cattaneo equations, linear fractional Klein–Gordon and dissipative Klein–Gordon equations. That paper and the 
references therein provided some recent progress related to our current study. By interpolating polynomials, Sousa and Li 
[21,22] constructed two implicit schemes for equations with the Riemann–Liouville fractional derivative and the Caputo frac-
tional derivative respectively, which are of second order accuracy, while in [23], high order finite difference schemes based 
on the weighted and shifted Grünwald difference operator were developed for solving space fractional diffusion equations. 
Along with these studies, we have proposed several high order finite difference schemes to solve time fractional differential 
equations with Caputo fractional derivative [24–26].

Most of the studies mentioned above concern with problems without nonlinear interferences. Nonlinear terms in frac-
tional differential equations make the study more difficult. Recently some works on numerical methods for nonlinear 
fractional differential equations have been done [27–37]. In [27], Li et al. proposed a Galerkin finite element method for non-
linear time–space fractional sub-diffusion and super-diffusion equations. By using the homotopy analysis method, in [28], 
the authors succeeded in solving the nonlinear fractional differential equations with high accuracy and efficiency. A modi-
fied anomalous time fractional sub-diffusion equation with a nonlinear source term was studied in [29,30], where a finite 
difference scheme of first order temporal accuracy and fourth order spatial accuracy was proposed. In [31], Cui constructed 
a fourth-order compact scheme for the one-dimensional Sine–Gordon equation. The resulting fully discrete nonlinear finite 
difference equation was solved by a predictor–corrector scheme. In [32], a difference scheme was derived for coupled non-
linear Schrödinger equations with the Riesz spatial fractional derivatives. A spatially second-order scheme for a nonlinear 
fractional Bloch–Torrey equation was recently studied in [33]. Wang and his colleagues have established many results on 
nonlinear partial differential equations [34–37].

The objective of this paper is to study high order finite difference schemes for the following two dimensional nonlinear 
fractional Klein–Gordon equation

C
0 Dα

t u − �u + u3 = f , x ∈ Ω = (0, L1) × (0, L2), 0 < t ≤ T , (1)

subject to the initial conditions

u(x,0) = φ(x),
∂u(x,0)

∂t
= ψ(x), x ∈ Ω̄ = Ω ∪ ∂Ω, (2)

and the boundary conditions

∂u

∂n
(x, t) = 0, x ∈ ∂Ω, 0 < t ≤ T , (3)

where

C
0 Dα

t u = 1

Γ (2 − α)

t∫
0

∂2u(x, s)

∂s2

ds

(t − s)α−1

is the Caputo fractional derivative of order α ∈ (1, 2) with Γ (·) being the gamma function.
Very recently, inspired by results in [34,35], we have established a compact scheme of order τ 3−α + h4 for the one 

dimensional fractional Klein–Gordon equation with Dirichlet boundary conditions, where τ and h are the time and space 
step sizes respectively. However, a critical lemma used in [34,35] is not readily to be obtained when the Dirichlet boundary 
conditions are replaced by the Neumann boundary conditions (3). In this paper, by a transformation of the matrix form 
of our proposed scheme, we succeed in getting the desired estimate (Lemma 3.3). Another difficulty for dealing with the 
Neumann boundary conditions is that, due to the nonlinear term u3, an extra term of order h3 is induced when the 
compact operator is acted on the boundary. In order to match the accuracy with that at interior grid points, this extra term 
is included in the proposed scheme as an artificial nonlinearity. Finally, it is well known that L∞ norm bound is not easy 
to get for problems with dimension greater than one. However, we have used this kind of bound in our previous study. 
To resolve this problem, a lemma in [36] is employed as a remedy. With all these efforts, we succeed in showing that our 
proposed scheme converges in ‖ · ‖H (defined as in Theorem 3.1) of order τ 3−α + h4

1 + h4
2.

This paper is organized as follows. A high order compact scheme is proposed in the next section. The stability and 
convergence of the compact scheme are analyzed in Section 3. In Section 4, numerical experiments are carried out to justify 
the theoretical results. The article ends with a brief conclusion.

2. The proposed compact finite difference scheme

To propose a compact scheme for (1)–(3), we let h1 = L1
M1

, h2 = L2
M2

and τ = T
N be the spatial and temporal step sizes 

respectively, where M1, M2 and N are some given integers. For i = 0, 1, . . . , M1, j = 0, 1, . . . , M2 and k = 0, 1, . . . , N , denote 
xi = ih1, y j = jh2, tk = kτ . For a grid function u = {uk

ij |0 ≤ i ≤ M1, 0 ≤ j ≤ M2, 0 ≤ k ≤ N}, we introduce the following 
notations:
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