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Parallel finite element nonlinear Stokes models have been successfully used for three-
dimensional ice-sheet and glacier simulations due to their accuracy and efficiency, and 
their capability for easily handling highly irregular domains and different types of 
boundary conditions. In particular, the well-known Taylor–Hood element pair (continuous 
piecewise quadratic elements for velocity and continuous piecewise linear elements for 
pressure) results in highly accuracy velocity and pressure approximations. However, the 
Taylor–Hood element suffers from poor mass conservation which can lead to significant 
numerical mass balance errors for long-time simulations. In this paper, we develop 
and investigate a new finite element Stokes ice sheet dynamics model that enforces 
local element-wise mass conservation by enriching the pressure finite element space by 
adding the discontinuous piecewise constant pressure space to the Taylor–Hood pressure 
space. Through various numerical tests based on manufactured solutions, benchmark 
test problems, and the realistic Greenland ice-sheet, we demonstrate that, for ice-sheet 
modeling, the enriched Taylor–Hood finite element model remains highly accurate and 
efficient, and is physically more reliable and robust compared to the classic Taylor–Hood 
finite element model.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Finite element methods have been successfully employed to numerically model and simulate 3D nonlinear Stokes ice 
sheet and glacier flows [1] because they have the flexibility to use unstructured grids that naturally conform to the rough 
terrain of the ice sheets and because such methods are based on variational formulations witch enables the natural ap-
plication and implementation of diverse boundary conditions. The Taylor–Hood finite element pair is very popular for the 
discretization of Stokes equations in many settings [12] and thus is also popular for approximating the ice-sheet dynamics. 
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This element pair consists of continuous piecewise quadratic elements for the velocity approximation and piecewise lin-
ear elements for the pressure; e.g., we have the Q2/Q1 finite element pair on hexahedral grids [17,8,9] and the P2/P1 
finite element pair on tetrahedral grids [31,14,16]. Stability and error estimates for the Taylor–Hood element pair for lin-
ear Stokes problems were rigorously obtained in, e.g., [4,5] based on the well-known inf-sup condition. In particular, this 
method is of high-order accuracy, with approximations of the velocity and pressure being third-order and second-order 
accurate, respectively. For the nonlinear Stokes ice-sheet simulation, similar numerical accuracies still hold for such element 
as demonstrated in [14]. On the other hand, because the classic Taylor–Hood finite element pair on tetrahedra uses a con-
tinuous pressure space, the incompressibility constraint is only satisfied globally, e.g., the mass is only conserved exactly 
on the whole domain but not at the element level. For this reason, other finite element pairs for Stokes discretization have 
been proposed for which the pressure approximations are discontinuous across element boundaries. One such element pair 
enriches the pressure approximating space with the necessarily discontinuous piecewise constant finite element space, thus 
adding a constant-valued variable for each element to the classical Taylor–Hood element. As a result, mass conservation 
is guaranteed at the element level in the sense that the average of the divergence of the velocity over each element is 
zero. This enriched Taylor–Hood finite element approximation was first used by [10,11] on linear Stokes and Navier–Stokes 
problems and its stability was proven by [23,25,29] on triangular and rectangular meshes. The stability for the enriched 
Taylor–Hood element of even higher order accuracy on general meshes is proven in [6].

Based on our previous work on high-order finite element approximations on tetrahedral grids for simulating ice-sheet 
flows via the nonlinear three-dimensional Stokes model [14,16], in this paper we develop and test a new finite element 
Stokes ice-sheet dynamics model that uses the enriched Taylor–Hood finite element pair. Through comparisons of the 
simulation results between the two finite element models on some typical problems, we demonstrate that the new compu-
tational finite element model conserves mass almost perfectly and is also physically more reliable and robust.

The rest of the paper is organized as follows. In Section 2, we review the nonlinear Stokes mathematical model for ice-
sheet dynamics. Then, in Section 3, we present the enriched Taylor–Hood finite element computational model for ice-sheet
dynamics and discuss nonlinear and linear solution techniques. In Section 4 we present the results of several computational 
demonstrations, including some dealing with manufactured solutions, others with standard test problems in the literature, 
and further ones for the realistic Greenland ice-sheet geometry.

2. The nonlinear Stokes ice sheet dynamics

2.1. Governing equations

Let the 3D spatial domain Ωt occupied by the ice sheet at a time t ∈ [0, tmax] be defined as

Ωt = {
(x, y, z)

∣∣ zb(x, y) ≤ z ≤ zs(x, y, t) for (x, y) ∈ ΩH
}
,

where ΩH denotes the horizontal extent of the ice sheet, zs(x, y, t) defines the elevation of the top surface Γs of the ice 
sheet, and zb(x, y) defines the fixed bottom surface Γb of the ice sheet. In general, zb(x, y) �= zs(x, y, t) along the boundary 
of ΩH , i.e., the margin of the ice sheet consists of a vertical cliff; thus the ice sheet also has a lateral boundary Γl . The 
dynamical behavior of ice sheets is mathematically modeled by the Stokes equations for the flow of an incompressible 
viscous fluid in the low Reynolds-number regime. Because the time scale of variations in the velocity and pressure fields 
is large, the entire material derivative is neglected. Furthermore, a nonlinear rheology, i.e., a nonlinear constitutive law is 
assumed. Letting [0, tmax] denote the time interval of interest, we then have

∇ · σ + ρg = 0 in Ωt × [0, tmax], (1)

∇ · u = 0 in Ωt × [0, tmax], (2)

where u = (u, v, w)T denotes the velocity, σ the full stress tensor, ρ the density of ice, and g = (0,0,−g) the gravitational 
acceleration. The full stress tensor σ can be decomposed in terms of the deviatoric stress τ and the static pressure p as

σ = τ − pI or σi j = τi j − pδi j, (3)

where p = − 1
3 tr(σ ), δi j denotes the Kronecker delta tensor, and I the unit tensor. Combining (1) and (3), we obtain the 

instantaneous momentum balance equation

−∇ · τ + ∇p = ρg in Ωt × [0, tmax]. (4)

The strain-rate tensor ε̇u is defined as

(ε̇u)i j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (5)

The constitutive law for ice relates the deviatoric stress tensor τ to the strain-rate tensor ε̇u by the generalized Glen’s flow 
law [19,21] based on the assumption of small strain-induced deformations:

τ = 2ηuε̇u (6)
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