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A computationally efficient approach to extrapolating a data field with second order accu-
racy is presented. This is achieved through the sequential solution of non-homogeneous 
linear static Hamilton–Jacobi equations, which can be performed rapidly using the fast 
marching methodology. In particular, the method relies on a fast marching calculation of 
the distance from the manifold Γ that separates the subdomain Ωin over which the quan-
ity is known from the subdomain Ωout over which the quantity is to be extrapolated. 
A parallel algorithm is included and discussed in the appendices. Results are compared to 
the multidimensional partial differential equation (PDE) extrapolation approach of Aslam 
(Aslam (2004) [31]). It is shown that the rate of convergence of the extrapolation within 
a narrow band near Γ is controlled by both the number of successive extrapolations 
performed and the order of accuracy of the spatial discretization. For m successive extrap-
olating steps and a spatial discretization scheme of order N , the rate of convergence in 
a narrow band is shown to be min(N + 1, m + 1). Results show that for a wide range of 
error levels, the fast marching extrapolation strategy leads to dramatic improvements in 
computational cost when compared to the PDE approach.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Many applications of computational science and engineering involve extrapolating data located in a subregion of a com-
putational space to the rest of the simulation domain. This is especially pertinent to the propagation of discontinuous 
fronts, which is a significant component of phenomena such as multiphase flows [1–10], supersonic flows [11], reacting 
flows [12–14], multiphase electrohydrodynamics [15,16], crack propagation [17,18], and image processing [19–21]. Calcula-
tions involving discontinuous fronts often suffer from numerical artifacts such as nonphysical oscillations and low orders of 
convergence [22,23], unless relevant quantities are extrapolated or extended across the front in order to avoid differentiat-
ing across discontinuities. A typical way of achieving this is by performing a constant extrapolation through the solution of 
a Hamilton–Jacobi type equation, as is the case in the original ghost fluid method [22,24,25] and a variety of other level set 
applications [1,26,2]. Another approach that circumvents Courant–Friedrichs–Lewy (CFL) limitations of a partial differential 
equation (PDE) extrapolation is the fast marching method (FMM), developed by Sethian [27] and Adalsteinsson and Sethian 
[28] for the solution of static Hamilton–Jacobi equations in the context of level set methods [29]. Constant FMM extrap-
olation has been recently employed to improve the accuracy of the conservative level set method [9]. The fast marching 
approach is proven to be much faster than a PDE approach, but Aslam [30] has argued that it would suffer from lower 
accuracy and a reduced rate of convergence under mesh refinement in some instances.
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Fig. 1. Schematics illustrating the extrapolation scenario.

Multidimensional extrapolation in the context of the PDE method has been described by Aslam [31] and subsequently 
used in application to the Stefan problem [32,33]. Despite its straightforward adaptivity to multidimensional extrapolation, 
the FMM has not yet been analyzed in detail for higher order extrapolations, which may be attributed to the aforementioned 
concerns regarding rate of convergence and accuracy. The goal of this study is to present a quantitative comparison between 
the PDE-based and FMM-based extrapolation methods, analyzing both the speed and accuracy of each method.

This paper is organized as follows: in the next section, the mathematical framework for multidimensional extrapolation 
is given, including a derivation of the expected order of accuracy, followed by discussions of both PDE and FMM solution 
approaches in Sections 2.3 and 2.4, respectively. Provided in Section 3 is a discussion of the PDE and FMM implementations 
used in this work. The PDE methodology is similar to the implementation of Aslam [31]. Parallel implementation of the 
FMM procedure for level set re-initialization and subsequent data extrapolation is provided in Appendix A and Appendix B, 
respectively. Section 4 presents multidimensional extrapolation results for the canonical test case used by Aslam [31]. Finally, 
this test case is also adapted to an additional shape in Section 5, revealing some subtleties of the method that are worth 
consideration. From these tests it is shown that the FMM provides a computationally efficient means of performing second 
order accurate extrapolation.

2. Mathematical formulation

2.1. Problem description

Consider a domain Ω that contains a continuous surface Γ , such that it divides Ω into an inner subdomain Ωin and an 
outer subdomain Ωout, as illustrated in Fig. 1(a). Then consider the function g(x) to be extrapolated, defined for all x ∈ Ω . 
To simplify the discussion, the function g(x) is considered here to be a scalar without loss of generality. There exists a signed 
distance level set φ(x) = ±‖x − xΓ ‖, where xΓ is the location on Γ that provides the minimum Euclidean distance from 
location x, as shown in Fig. 1(b). The sign of φ is negative in the domain Ωin and positive in the domain Ωout. The level set 
φ is an auxiliary function to our discussion and, given φ, a smooth field of normal vectors is obtained from

n = ∇φ

‖∇φ‖ , (1)

oriented outward from Ωin.
For any point x ∈ Ωout, the function h(x) is defined as the mth order Taylor Series expansion of g from xΓ , i.e.,

h(x) =
m∑

k=0

φk

k!
∂k g

∂φk

∣∣∣∣
xΓ

. (2)

Note that the x dependence of φ has been dropped for simplicity. We will build our extrapolation of g in the form of the 
function f (x), written as

f (x) =
{

g(x) if x ∈ Ωin,

h(x) if x ∈ Ωout.
(3)

It is clear that f (x) should be Cm continuous across Γ .

2.2. Expected accuracy

When obtaining f for a set of numerical data, it is clear from Eqs. (2) and (3) that the resulting accuracy of the extrap-
olated f field in Ωout will depend on both m and the accuracy of the discrete representation of ∂k g/∂φk|xΓ . Assuming that 
n is horizontal and xΓ = 0 such that the distance from Γ is described by the variable x, we introduce a discrete upwind 
operator U that approximates the first derivative of a function with order of accuracy N such that

g′
i = U(gi) +O

(
�xN)

, (4)
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