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We present a methodology that accelerates the classical Jacobi iterative method by factors 
exceeding 100 when applied to the finite-difference approximation of elliptic equations 
on large grids. The method is based on a schedule of over- and under-relaxations 
that preserves the essential simplicity of the Jacobi method. Mathematical conditions 
that maximize the convergence rate are derived and optimal schemes identified. The 
convergence rate predicted from the analysis is validated via numerical experiments. The 
substantial acceleration of the Jacobi method enabled by the current method has the 
potential to significantly accelerate large-scale simulations in computational mechanics, as 
well as other areas where elliptic equations are prominent.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Elliptic equations appear routinely in computational fluid and solid mechanics as well as in heat transfer, electrostatics 
and wave propagation. Discretization of elliptic partial differential equations using finite-difference or other methods leads 
to a system of linear algebraic equations of the form Au = b, where u is the variable, b the source term, and A a banded 
matrix that represents the coupling between the variables. In the context of computational fluid mechanics, which is of 
particular interest to us, the Poisson equation for pressure appears in the majority of incompressible Navier–Stokes solvers 
[1,2], and is by far, the most computationally intensive component of such simulations. Thus, any effective methods that 
can accelerate the numerical solution of such equations would have a significant impact on computational mechanics and 
numerical methods.

The early history of iterative methods for matrix equations goes back to Jacobi [3] and Gauss [4], and the first appli-
cation of such methods to a finite-difference approximation of an elliptic equation was by Richardson [5]. The method of 
Richardson, which can be expressed as un+1 = un − ωn(Aun − b), where n and ω are the iteration index and the relaxation 
factor respectively, was a significant advance since it introduced the concept of convergence acceleration through successive 
relaxation. Richardson further noted that ω could be chosen to successively eliminate individual components of the resid-
ual. However, this required knowledge of the full eigenvalue spectrum of A, which was impractical. Given this, Richardson’s 
recipe for choosing ω was to distribute the “nodes” (or zeros) of the amplification factor evenly within the range of eigen-
values of A. This was expected to drive down the overall amplification factor for the iterative scheme, and the advantage of 
this approach was that it required knowledge of only the smallest and the largest eigenvalues of A.

* Corresponding author.
E-mail addresses: xyang44@jhu.edu (X.I.A. Yang), mittal@jhu.edu (R. Mittal).

http://dx.doi.org/10.1016/j.jcp.2014.06.010
0021-9991/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2014.06.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:xyang44@jhu.edu
mailto:mittal@jhu.edu
http://dx.doi.org/10.1016/j.jcp.2014.06.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2014.06.010&domain=pdf


696 X.I.A. Yang, R. Mittal / Journal of Computational Physics 274 (2014) 695–708

Richardson’s method subsequently appeared in the seminal doctoral dissertation of Young [6]. Noting, however, that
“... it appears doubtful that a gain of a factor of greater than 5 in the rate of convergence can in general be realized unless one is 
extremely fortunate in the choice of the values of ω”, Young discarded this method in favor of successive over-relaxation of the 
so-called Liebmann Method [7], which was essentially the same as the Gauss–Seidel method. This seems to signal the end 
of any attempts to accelerate Jacobi or Jacobi-like methods for matrix equations resulting from discrete approximations of 
elliptic equations.

In this article we describe a new approach for accelerating the convergence of the Jacobi iterative method as applied 
to the finite-difference approximation of elliptic equations. Using this approach, gains in convergence-rate well in excess 
of a factor of 100 are demonstrated for problem sizes of practical relevance. The increase of processor count in parallel 
computers into the tens of thousands that is becoming possible with multi-core and GPU architectures [8], is leading to an 
ever-increasing premium on parallelizability and scalability of numerical algorithms. While sophisticated iterative methods 
such as multigrid (MG) are highly efficient on a single processor [9], it is extremely difficult to maintain the convergence 
properties of these methods in large-scale parallel implementations. The domain decomposition approaches associated with 
parallel implementations negatively impact the smoothing properties of the iterative solvers used in MG, and also limit the 
depth of coarsening in such methods; both of these can significantly deteriorate the convergence properties of MG methods. 
In addition to this, the ratio of computation to communication also decreases for the coarse grid corrections, and this further 
limits the scalability of these methods. Within this context, the iterative method described here, preserves the insensitivity 
of the Jacobi method to domain decomposition, while providing significant convergence acceleration.

Another class of methods that is extensively used for solving elliptic equations is conjugate gradient (CG) [10]. CG meth-
ods, however, require effective preconditioners in order to produce high convergence rates; in this context, the method 
proposed here could eventually be adapted as a preconditioner for CG methods. Thus, the method described here could 
be used as an alternate to or in conjunction with these methods, and as such, could have a significant impact in computa-
tional mechanics as well as other fields such as weather and climate modeling, astrophysics and electrostatics, where elliptic 
equations are prominent.

Finally, the slow convergence rate of the Jacobi iterative method and the inability to accelerate this method using relax-
ation techniques is, at this point, considered textbook material [10–12]. In most texts, a discussion of the Jacobi method and 
its slow convergence is followed immediately by a discussion of the Gauss–Seidel method as a faster and more practical 
method. In this context, the method described here demonstrates that it is in-fact, relatively easy to increase the conver-
gence rate of the Jacobi method by factors exceeding those of the classical Gauss–Seidel method. It is therefore expected 
that the method presented here will have a fundamental impact on our view of these methods, and spur further analysis of 
the acceleration of these basic methods.

2. Jacobi with successive over-relaxation (SOR)

We employ a 2D Laplace equation in a rectangular domain of unit size as our model problem: ∂2u/∂x2 + ∂2u/∂ y2 = 0. 
A 2nd-order central-difference discretization on a uniform grid followed by the application of the Jacobi iterative method 
with a relaxation parameter ω, leads to the following iterative scheme:

un+1
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where n is the index of iteration. von Neumann analysis [11] of the above scheme results in the following amplification 
factor:

Gω(κ) = (1 − ωκ) with κ(kx,ky) = sin2(kx�x/2) + sin2(ky�y/2) (2)

where �x and �y are the grid spacings and kx and ky the wave-numbers in the corresponding directions. The largest value 
of κ is given by κmax = 2. The smallest non-zero value of κ depends on the largest independent sinusoidal wave that the 
system can admit. A Neumann (N) problem allows waves to be purely one-dimensional, i.e. elementary waves can have 
kx = 0 or ky = 0, whereas for Dirichlet (D) problems, one-dimensional waves are, in general, not admissible, and kx , ky must 
all be non-zero. Therefore the corresponding κmin are given by:
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The above expressions are true for a uniform mesh and Section 8 describes the extension of this approach to non-uniform 
meshes.

The convergence of the iterative scheme requires |G| < 1 for all wave numbers, and it is easy to see from Eq. (2) that 
over-relaxation of the Jacobi method violates this requirement. Furthermore, for a given grid, κN

min < κD
min; thus Neumann 

problems have a wider spectrum and are therefore more challenging than the corresponding Dirichlet problem. We therefore 
focus most of our analysis on the Neumann problem. We also note that while the above analysis is for 2D problems, cor-
responding 1D and 3D problems lead to exactly the same expressions for the amplification factors, and similar expressions 
for κmin, with a pre-factor different from unity.
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