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We present a new numerical system using finite elements with mesh adaptivity for the 
simulation of solid–liquid phase change systems. In the liquid phase, the natural convection 
flow is simulated by solving the incompressible Navier–Stokes equations with Boussinesq 
approximation. A variable viscosity model allows the velocity to progressively vanish in 
the solid phase, through an intermediate mushy region. The phase change is modeled by 
introducing an implicit enthalpy source term in the heat equation. The final system of 
equations describing the liquid–solid system by a single domain approach is solved using a 
Newton iterative algorithm. The space discretization is based on a P2–P1 Taylor–Hood finite 
elements and mesh adaptivity by metric control is used to accurately track the solid–liquid 
interface or the density inversion interface for water flows.
The numerical method is validated against classical benchmarks that progressively add 
strong non-linearities in the system of equations: natural convection of air, natural 
convection of water, melting of a phase-change material and water freezing. Very good 
agreement with experimental data is obtained for each test case, proving the capability 
of the method to deal with both melting and solidification problems with convection. 
The presented numerical method is easy to implement using FreeFem++ software using 
a syntax close to the mathematical formulation.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Solid–liquid phase change systems involving melting or freezing processes are encountered in numerous practical appli-
cations, ranging from metal casting and thermal energy storage to food freezing. Most of the models consider the conduction 
as the principal mechanism in describing the heat transfer during melting or solidification (Stefan problem). Recent models 
include several other important physical phenomena, such as gravity effects, convection in the liquid phase, the presence of 
a mushy region (containing both solid and liquid particles) at the interface between the two phases, etc. For a comprehensive 
review of such models, see [1].

In particular, it was found that the natural convection in the liquid plays an important role in the heat transfer be-
tween phases and the propagation of the melting/solidification front [2–7]. This is specifically the case in recent practical 
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applications using phase-change materials (PCM) to store heat energy or to diminish temporary peak temperatures in differ-
ent technologies (e.g. thermal regulation of buildings, passive cooling of electronic devices). Another example of convection 
dominated phase-change systems is the water freezing, appearing in many environmental applications, such as water trans-
portation, food processing, weather prediction, etc.

In this paper we use a single domain approach to simulate phase-change systems with convection. In the liquid phase, 
the natural convection flow is simulated by solving the full incompressible Navier–Stokes equations with Boussinesq ap-
proximation. The same system of equations is solved in the solid phase by introducing a variable viscosity coefficient taking 
very large values in the solid (e.g. [8]). This model allows the velocity to progressively vanish in the solid through an in-
termediate mushy region, defined accordingly to classical enthalpy methods (e.g. [3,9,10]). In enthalpy methods, the phase 
change is modeled by introducing an enthalpy source term in the heat equation. The phase-change is supposed to occur 
over a temperature interval setting the width of the mushy region. This temperature interval is also used to regularize 
discontinuous functions representing the variation of material constants (conductivity, specific heat, latent heat) across the 
solid–liquid interface.

The main advantage of the single domain approach is that the same system of equations is solved in both liquid and 
solid phase. In exchange, the numerical method has to tackle two important challenges: properly resolve the convection 
cells in the fluid region and accurately capture the solid–liquid interface. The former issue is related to the non-linearity in 
the momentum Navier–Stokes equations, while the latter comes mainly from the very sharp variation of the coefficients of 
the equations (viscosity, latent heat, etc.) in a small region around the solid–liquid interface. Since most of the numerical 
methods presented in the numerical heat transfer community use finite difference (FD) or finite volume (FV) methods on 
a fixed mesh, the general strategy to address these issues is to dramatically increase the mesh resolution in the whole 
domain. This results is a considerable increase of the computational time, even for two dimensional cases. Finite element 
(FE) methods offer the possibility to dynamically refine the mesh only in the regions of the domain where sharp phenomena 
take place (e.g. solid–liquid interface, recirculation zones).

FE methods were used in late 1980s to derive mathematically sound numerical algorithms for the Stefan problem 
(involving Laplace operators). Different modeling approaches were analyzed, from enthalpy-type methods (e.g. [11]) to front-
tracking methods (e.g. [12]). Only recently, adaptive FE methods were proposed for the phase-change problem. A moving 
mesh technique was developed in [13] and used to simulate melting and solidification problems. The method was based on 
solving a modified set of equations, including two supplementary partial differential equations modeling the mesh move-
ment between two time steps. An anisotropic mesh adaptation algorithm based on an approximation of a hierarchical error 
estimator was proposed in [14] for classical two-phase Stefan problem (without convection). A different mesh adaptivity 
strategy, based on the definition of edge length from a solution dependent metric, was used to deal with the same Stephan 
problems in three-dimensional simulations. This last adaptivity method, based on solution dependent metrics, was also 
tested for phase-change systems with convection in [15]. The use of locally adaptive meshes with strong anisotropy proved 
very effective in reducing the number of computational nodes for phase-change systems.

As a first contribution of the present paper, we introduce an FE method with time-dependent mesh adaptivity by met-
ric control that is effective for a large range of phase-change systems with convection, from melting to solidification. The 
proposed mesh refinement strategy has the capacity to take into account different metrics and thus the ability to refine 
the mesh in different regions of interest in the computational domain. In particular, we show that the method is able to 
simultaneously track several interfaces in the domain, a feature that was not present in previous mesh refinement algo-
rithms. Similar algorithms based on FreeFem++ [16,17] were successfully used for solving different systems of equations 
with locally sharp variation of the solution, such as Gross–Pitaevskii equation [18,19] or Laplace equations with nonlinear 
source terms [20].

The second contribution of this paper is the derivation of a Newton algorithm for solving the nonlinear system of 
equations for the single domain approach of the phase-change system with convection. Newton linearization has been suc-
cessfully used for fluid dynamics and heat transfer equations (e.g. [21]) with the advantage to accelerate computations due 
to its rapid quadratic convergence. Effective classical or high-order Newton methods for the steady Navier–Stokes equations 
were proposed in [22,23] using finite-difference methods on non-staggered grids. For the Navier–Stokes–Boussinesq system, 
a Newton method with explicit treatment of the temperature was briefly introduced in [15]. We derive below a fully-implicit 
Newton method for the phase-change system based on a finite-element formulation of the Navier–Stokes equations. The ad-
vantage of this formulation is to permit a straightforward implementation of different types of non-linearities in the system 
of equations. For the sake of modularity, we derive and test the Newton algorithm by progressively treating the following 
non-linearities:

(i) the convective nonlinear term in the Navier–Stokes–Boussinesq equations (test case: natural convection of air in a 
differentially heated cavity),

(ii) problem (i) plus a nonlinear buoyancy term (test case: natural convection of water in a differentially heated cavity),
(iii) problem (i) plus the enthalpy nonlinear source term and nonlinear variable viscosity (test case: melting of phase-change 

material),
(iv) problem (iii) plus a nonlinear buoyancy term and nonlinear variation of thermodynamic properties (test case: water 

freezing).
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