
Journal of Computational Physics 274 (2014) 920–935

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A preconditioned dual–primal finite element tearing and 

interconnecting method for solving three-dimensional 
time-harmonic Maxwell’s equations

Ming-Feng Xue, Jian-Ming Jin ∗

Center for Computational Electromagnetics, Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, 
Urbana, IL 61801-2991, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 February 2014
Accepted 20 June 2014
Available online 30 June 2014

Keywords:
Domain decomposition method (DDM)
Dual–primal finite element tearing and 
interconnecting (FETI-DP)
Second-order transmission condition
Coarse space correction
Lagrange multiplier
Perfectly matched layers
Matrix-splitting preconditioner

A new preconditioned dual–primal nonoverlapping domain decomposition method is 
proposed for the finite element solution of three-dimensional large-scale electromagnetic 
problems. With the aid of two Lagrange multipliers, the new method converts the 
original volumetric problem to a surface problem by using a higher-order transmission 
condition at the subdomain interfaces to significantly improve the convergence of the 
iterative solution of the global interface equation. Similar to the previous version, a global 
coarse problem related to the degrees of freedom at the subdomain corner edges is 
formulated to propagate the residual error to the whole computational domain at each 
iteration, which further increases the rate of convergence. In addition, a fully algebraic 
preconditioner based on matrix splitting is constructed to make the proposed domain 
decomposition method even more robust and scalable. Perfectly matched layers (PMLs) are 
considered for the boundary truncation when solving open-region problems. The influence 
of the PML truncation on the convergence performance is investigated by examining the 
convergence of the transmission condition for an interface inside the PML. Numerical 
examples including wave propagation and antenna radiation problems truncated with PMLs 
are presented to demonstrate the validity and the capability of this method.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

For computational electromagnetics, the finite element method (FEM) is a powerful numerical tool for its excellent ca-
pability to model complex media and delicate geometries [1,2]. However, for the analysis of large-scale three-dimensional 
(3D) problems, finite element simulations usually require massive computational resources and result in a linear system 
difficult to solve efficiently no matter using a direct or an iterative solver. To overcome this challenge, several finite-element-
based domain decomposition methods (DDMs) have been proposed to artificially split the entire computational domain into 
smaller subdomains and hybridize direct and iterative solvers in a two-level manner during the solution procedure [3–6]. 
These algorithms are inherently suitable for parallel implementation, thus taking the full advantage of new generation 
parallel processors and clusters. The two most advanced nonoverlapping DDMs are the dual–primal finite element tear-
ing and interconnecting (FETI-DP) method [4,5,7,8] and the cement element method [6,9,10], which stem from the Schur 
complement method [3] and the Schwarz method [3], respectively. Both methods were initially developed and have been 
widely employed for solving scalar Helmholtz equations [11–16].
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The interface transmission condition (TC) used to connect the subdomains is recognized as a key ingredient affect-
ing the convergence performance of a nonoverlapping domain decomposition algorithm when solving a wave equation. 
This interface condition should make the subdomain interfaces as transparent as possible to facilitate information ex-
change across the subdomains for a fast iterative convergence of the global interface problem. To improve the widely 
used first-order TC (FOTC) [5,6], a few higher-order TCs have been derived by using the Fourier analysis [15–18]. How-
ever, some of these interface conditions are nonlocal in nature and have to be approximated by local operators. Among 
those designed for vector wave equations, the optimized TC based on first-order Maxwell’s equations [19], the approxi-
mated sparse boundary integral (BI) equation [20], the second-order transverse-electric TC (SOTC-TE) [9,17], and the fully 
second-order TC (SOTC-FULL) [10] have demonstrated an improved performance. Particularly, the SOTC-FULL ensures the 
transmission of both transverse-electric (TE) and transverse-magnetic (TM) evanescent modes, without sacrificing the trans-
mission of propagating modes, by adding to the FOTC a surface curl–curl term related to the interface electric field and 
another surface gradient corresponding to the interface electric charge density [10]. On the other hand, at the discrete 
level, it has been observed that the optimal interface operator is equal to the Schur complement of the outer domain 
[21,22], which can be directly approximated using purely algebraic techniques like sparse approximate inverse methods 
or incomplete factorization [21]. However, this approach is limited to the case with conformal meshes on the subdo-
main interfaces. Recently, a new technique called the sweeping preconditioner was advocated for solving time-harmonic 
wave equations [23], where several perfectly matched layers (PMLs) were employed to mimic the behavior of transpar-
ent interface conditions. Due to its overlapping nature, this algorithm does not scale well with respect to the number of 
subdomains.

Another issue associated with a DDM is the treatment of corner unknowns which are defined on the geometrical cross-
points shared by more than two subdomains. When such crosspoints are present, one must weakly impose two different 
sets of equations for each interface at the crosspoint, thus making the discretization more complicated [24–27]. It has been 
found that the TC parameters need to be modified for the interface containing geometrical crosspoints when solving the 
scalar Helmholtz equations [25]. A similar difficulty was also observed in the case of Maxwell’s equations [10], when the 
surface curl-conforming vector basis functions were adopted to expand the cement variables. One has to break cement 
variables defined on corner edges into two independent components to avoid an incorrect enforcement of the tangential 
magnetic field continuity at the corner. Additional corner edge penalty terms, relating to the divergence-free constraint for 
the cement variables, have to be introduced to remove singularity caused by redundant cement variables. In contrast, the 
FETI-DP method solves this problem efficiently by extracting corner electric fields out and constructing a global corner sys-
tem [4,5,7] by enforcing a strong Dirichlet continuity condition rather than a weak TC at corners. The purpose of such a 
coarse grid correction is two-fold: (1) It avoids redundant auxiliary variables at corner edges because no dual unknowns 
have to be defined there, and (2) it introduces a mechanism to propagate the iterative residual error globally. The FOTC has 
been incorporated into this dual–primal strategy [5,7] and demonstrated a remarkable performance. However, a higher-order 
TC has yet to be incorporated into this dual–primal scheme.

As the global interface problem of a DDM is solved iteratively, a preconditioner is always desirable to improve the iter-
ative convergence. However, application of the well-investigated algebraic preconditioners, such as those based on a partial 
inverse, is difficult because the matrix associated with the global interface problem is not explicitly assembled. To efficiently 
solve scalar Helmholtz problems, one can devise a preconditioner by constraining the residual of the iterative FETI solu-
tion to be orthogonal to an auxiliary wave-based coarse space [28,29]. Enlightened by this idea, a similar preconditioning 
technique, called global plane wave deflation (GPWD), was derived to alleviate the weakly convergent influences caused by 
cutoff or near-cutoff modes [30]. Different from the one proposed in [28], the GPWD preconditioner constructs an auxiliary 
coarse space on subdomain interfaces rather than within the entire computational domain. As a result, geometrically pla-
nar subdomain interfaces are required to support surface plane waves. More recently, a fully algebraic local preconditioner 
called the locally exact algebraic preconditioner (LEAP) was proposed to accelerate the FETI method [31]. A careful study 
shows that with the global interface unknowns reordered, the LEAP is essentially a block diagonal preconditioner involving 
computationally expensive preprocessing. In this paper, we present an efficient preconditioning scheme based on matrix 
splitting for the FETI-DP method. This preconditioner does not require assembling the global interface system matrix explic-
itly, thus having a high parallel efficiency. In addition, it consumes only a negligible extra memory and computation time in 
the setup stage.

The rest of this paper is organized as follows. In Section 2.1, we first discuss the choice of TC parameters for the case of 
PML truncation. Because the PML material could be active along a certain axis though it is lossy in general, the interface TC 
has to be designed carefully to avoid any mismatch or divergence if the subdomain interface resides inside the PML. Then, 
we formulate a new FETI-DP method combining the dual–primal idea with higher-order TCs to significantly improve the 
convergence of the interface solution in Section 2.2. Afterwards, a matrix splitting technique is introduced in Section 2.3 to 
facilitate the construction of an efficient preconditioner to make the new FETI-DP method more robust. Finally, several wave 
propagation and antenna radiation examples are shown to illustrate the better convergence performance of the proposed 
method by comparing it with several other DDM solvers in Section 3.



Download English Version:

https://daneshyari.com/en/article/519940

Download Persian Version:

https://daneshyari.com/article/519940

Daneshyari.com

https://daneshyari.com/en/article/519940
https://daneshyari.com/article/519940
https://daneshyari.com

