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a b s t r a c t

The Fourier pseudospectral time-domain (F-PSTD) method is computationally one of the
most cost-efficient methods for solving the linearized Euler equations for wave propaga-
tion through a medium with smoothly varying spatial inhomogeneities in the presence
of rigid boundaries. As the method utilizes an equidistant discretization, local fine scale
effects of geometry or medium inhomogeneities require a refinement of the whole grid
which significantly reduces the computational efficiency. For this reason, a multi-domain
F-PSTD methodology is presented with a coarse grid covering the complete domain and
fine grids acting as a subgrid resolution of the coarse grid near local fine scale effects. Data
transfer between coarse and fine grids takes place utilizing spectral interpolation with
super-Gaussian window functions to impose spatial periodicity. Local time stepping is
employed without intermediate interpolation. The errors introduced by the window func-
tions and the multi-domain implementation are quantified and compared to errors related
to the initial conditions and from the time iteration scheme. It is concluded that the multi-
domain methodology does not introduce significant errors compared to the single-domain
method. Examples of scattering from small scale density scatters, sound reflecting from a
slitted rigid object and sound propagation through a jet are accurately modelled by the
proposed methodology. For problems that can be solved by F-PSTD, the presented method-
ology can lead to a significant gain in computational efficiency.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

To obtain deterministic time-dependent solutions for physical problems as unsteady fluid flow and acoustic propagation
through a non-uniform medium, numerical solution strategies using a volumetric discretization of the spatial domain are
needed. These solution strategies often share geometrical and time-domain limitations due to the required computational
resources. The development of numerical methodologies that keep accuracy but enhance computational efficiency is chal-
lenging many branches of the computational engineering society. One of the techniques to solve time-dependent problems,
that has received significant interest over the last decades, is the family of pseudospectral time-domain (PSTD) methods, see
e.g. Refs. [1–5]. The most efficient of the PSTDs, the Fourier PSTD method (F-PSTD) has similarities with the well-known
finite-difference time-domain (FDTD) method [6], as the physical domain of interest is discretized by an orthogonal equidis-
tant grid and the solution is sought at discrete grid points. For the evaluation of the time-derivatives in FDTD and F-PSTD,
numerical methods as the Runge–Kutta method, Adams–Bashforth method or MacCormack scheme can be used. In contrast
to using finite differences, evaluation of the spatial derivatives in F-PSTD is carried out by transforming the spatial variables
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through a set of basis functions and executing the derivatives in the transformed domain. An inverse transformation through
the basis functions returns the spatial derivatives in the spatial domain. As the basis in F-PSTD consists of Fourier kernels, the
transforms can be operated by fast Fourier transforms (FFT). As a result, only 2 spatial points per smallest wavelength are
necessary to resolve the smallest wavelength of interest with spectral accuracy. This low resolution can even be approxi-
mated for slowly varying medium properties [7]. The F-PSTD method herewith offers, compared to the FDTD method with
similar accuracy, a way to reduce the number of degrees of freedom as well as the computational efficiency, especially for
three-dimensional problems, see e.g. [1,8]. It is at the other hand limited by its uniform Cartesian grid and so far, impedance
boundary conditions can only be treated in an approximate way, see e.g. [9]. This paper focuses on a solution of acoustic
propagation problems governed by the linearized Euler equations (LEE) in non-conservative form. In three-dimensional
(3D) Cartesian coordinates, they read:
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with q = [q,ux,uy,uz,p]T the acoustic variable vector, q the density, uj the velocity components with index j equal to x, y or z, p
the pressure, c the heat capacity ratio and d the Kronecker delta function. All physical variables are decomposed into their
ambient values, denoted by subscript 0, and acoustic fluctuations:

qtot ¼ q0 þ q;
utot ¼ u0 þ u;
ptot ¼ p0 þ p; ð2Þ

with u = [ux,uy,uz]T the velocity vector. Eqs. (1) assume that the ambient variables are known. No constraints on the com-
pressibility of the background medium are imposed, and no aero-acoustic sources are considered. Eq. (1) are closed with
boundary conditions and enable to solve acoustic propagation problems with arbitrary media properties, including the pres-
ence of a non-uniform mean flow. A large amount of these problems are characterized by smoothly varying ambient prop-
erties and acoustically rigid staircase-type boundaries1 and can be solved by the extended F-PSTD method, e.g. outdoor sound
propagation in the presence of an atmospheric wind field and detailed rigid objects as trees, and flow acoustic problems such as
sound radiation from a pipe in the presence of a jet flow. The F-PSTD discretization of these problems is determined by the
smallest wavelength of interest, the smallest length scales from geometry or medium heterogeneities. For many applications,
the equidistant discretization implies a too high discretization to resolve the smallest wavelength of interest for most of the
domain. Such applications would preferably be solved by a multi-domain discretization method. A multi-domain F-PSTD meth-
od would favour hybrid domain discretization methods involving other methods, as the F-PSTD method excels regarding both
the required number of grid points per wavelength and stability conditions for time-dependent problems. Wang and Takenaka
have presented such a methodology [10]. Their work contained a sequence of domains along one direction and a global time
step bounded by the smallest spacing was used throughout the domain. For interpolation from the coarse to the fine grid, spec-
tral interpolation was implemented globally, i.e. for the complete domain.

In this paper, a multi-domain F-PSTD method to solve the LEE is presented where the sub-domains differ in grid spacing
and are separated by interfaces. Data transfer between the grids takes place at both sides of the interface. The coarse grid
variable values are spectrally interpolated in the spatial domain to the finer grid, and the fine grid variable values are

1 Staircase-type boundaries denote boundaries that can be captured by an equidistant orthogonal grid.
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