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a b s t r a c t

In the following paper, we discuss the exhaustive use and implementation of stabilization
finite element methods for the resolution of the 3D time-dependent incompressible
Navier–Stokes equations. The proposed method starts by the use of a finite element vari-
ational multiscale (VMS) method, which consists in here of a decomposition for both the
velocity and the pressure fields into coarse/resolved scales and fine/unresolved scales. This
choice of decomposition is shown to be favorable for simulating flows at high Reynolds
number. We explore the behaviour and accuracy of the proposed approximation on three
test cases. First, the lid-driven square cavity at Reynolds number up to 50,000 is compared
with the highly resolved numerical simulations and second, the lid-driven cubic cavity up
to Re = 12,000 is compared with the experimental data. Finally, we study the flow over a 2D
backward-facing step at Re = 42,000. Results show that the present implementation is able
to exhibit good stability and accuracy properties for high Reynolds number flows with
unstructured meshes.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

The incompressible Navier–Stokes equations are used to model a number of important physical phenomena, including
pipe flow, flow around airfoils, weather, blood flow and convective heat transfer inside industrial furnaces. Significant
emphasis has been placed in the literature on developing stabilized formulations robust enough to model complex flows
at high Reynolds number [1–4].

It is known that the Galerkin approximation of the Navier–Stokes equations may fail because of two reasons. Firstly, in
convection dominated flows, for which layers appears where the velocity solution and its gradient exhibit rapid variation,
the classical Galerkin approach leads to numerical oscillations in these layer regions which can spread quickly and pollute
the entire solution domain. Secondly, the use of inappropriate combinations of interpolation functions to represent the
velocity and pressure fields [5,6] yields unstable schemes. The pressure and convective instabilities associated with the
Galerkin formulation are usually circumvented by addition of stabilization terms.

The present work aims at retaining the advantages of using linear approximations (P1 finite elements) regarding the accu-
racy and the computational cost, especially for 3D real applications. The use of unstructured meshes and thus automatic and
adaptive mesh generation can be easily applicable. But it is well known that the combination of P1–P1 approximation for the
velocity and the pressure does not lead to a stable discretization since it does not satisfy the Babuska–Brezzi condition.

Many measures may be distinguished to solve and get around these two difficulties, the instabilities in convection-dom-
inated regime and the velocity–pressure compatibility condition. A very popular method was firstly proposed by Arnold,
Brezzi and Fortin [7] for the Stokes problem. It was suggested to enrich the functional spaces with space of bubble functions
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known as Mini-element. Since the bubble functions vanish on each element boundary, they can be eliminated and statically
condensed giving rise to a stabilized formulation for equal-order linear element. In diffusion dominant cases, the Mini-ele-
ment formulation of the problem yields acceptable results. However, when the convection terms dominate, the results can
be impaired and an extension for this method is needed. Later, in [8], it was pointed out that resorting to these local bubbles
is equivalent to using residual-based stabilized schemes with a natural way of choosing the stabilization parameters: the
selection of the optimal bubble function reproducing the appropriate choice of the stability parameter. Thus, it is clear that
the bubble can take different shapes for the diffusive dominated regime and for the advection-dominated flow regime. For
example, it was shown in [9,10] that upwind bubbles could be used to reproduce the SUPG stabilization.

A standard reference for mixed finite element methods is the book of Brezzi and Fortin [11]. A brief history on residual based
stabilisation methods can be found in Brezzi et al. [12], the book of Donea and Huerta [13], all the articles by Hughes et al. [14–
16] on multiscale methods and SUPG/PSPG methods by Tezduyar [17]. The Unusual Stabilised finite element method (USFEM)
was introduced by Franca and Farhat in [18]. Codina and co-workers introduced lately recent developments of residual based
stabilisation methods using orthogonal subscales and time dependent subscales [19–23]. These methods are very promising
and can be regarded as an open door to turbulence. At the same level, one can find a complete description on the use of varia-
tional multiscale method for turbulent flows in [24–26] where a three scale separation method was developed and applied.

In the past three decades, various numerical methods were developed to solve this problem [9,27–29]. The present work
is inspired notably from [5,30] where only the enrichment of the velocity was considered, and from the work in [31] where
the decomposition of the pressure was considered but tested for only laminar flow situations. In this sense, the main con-
tributions of this work, considered as a continuation of those references, are a systematic use of the variational multiscale
method [32–34] for three-dimensional problems and an implementation of a consistent formulation suitable for large prob-
lems with high Reynolds number and unstructured meshes. It resides in the combination of different published arguments,
such as the use of the decomposition for both the velocity and the pressure fields into coarse scales and fine scales, the use of
upwind bubble for the convection term in the fine scale equation, and finally, from an implementation point of view, the use
of a matrix formulation needed simply for a direct static condensation. Consequently, a particular emphasis is placed on the
performance of the implemented method for two-dimensional and three-dimensional problems with high Reynolds number,
up to 50,000 and 12,000 respectively.

The outline of the paper is as follows: first, we present the time-dependent, three-dimensional, Navier–Stokes problem. In
Section 3, we present the stabilizing schemes from a variational multiscale point of view to deal with convection dominated
problems. In Section 4, the numerical performance of the presented method is demonstrated by means of 2D and 3D test
cases. Comparisons with the literature results are presented. Finally, conclusions and perspectives are outlined.

2. The incompressible Navier–Stokes equations

Let X � Rn be the spatial domain at time t 2 [0,T], where n is the number of space dimensions. Let C denote the boundary
of X. We consider the following velocity–pressure formulation of the Navier–Stokes equations governing unsteady incom-
pressible flows:

qð@tuþ u � $uÞ � $ � r ¼ f in X� ½0; T� ð1Þ
$ � u ¼ 0 in X� ½0; T� ð2Þ

where q and u are the density and the velocity, f the body force vector per unity density and r the stress tensor which reads:

r ¼ 2l eðuÞ � p Id ð3Þ

with p and l the pressure and the dynamic viscosity, Id the identity tensor and e the strain-rate tensor defined as

eðuÞ ¼ 1
2
ð$uþ t$uÞ ð4Þ

Essential and natural boundary conditions for Eq. (1) are:

u ¼ g on Cg � ½0; T� ð5Þ
n � r ¼ h on Ch � ½0; T� ð6Þ

Cg and Ch are complementary subsets of the domain boundary C. Functions g and h are given and n is the unit outward
normal vector of C. As initial condition, a divergence-free velocity field u0(x) is specified over the domain Xt at t = 0:

uðx;0Þ ¼ u0ðxÞ ð7Þ

3. Multiscale variational approach

3.1. Weak formulation of the incompressible Navier–Stokes equations

The function space for the velocity and the scalar function space for the pressure are respectively defined by:
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