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We present an approach to solving hyperbolic conservation laws by finite-volume methods 
on mapped multiblock grids, extending the approach of Colella, Dorr, Hittinger, and 
Martin (2011) [10] for grids with a single mapping. We consider mapped multiblock 
domains for mappings that are conforming at inter-block boundaries. By using a smooth 
continuation of the mapping into ghost cells surrounding a block, we reduce the inter-block 
communication problem to finding an accurate, robust interpolation into these ghost cells 
from neighboring blocks. We demonstrate fourth-order accuracy for the advection equation 
for multiblock coordinate systems in two and three dimensions.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The solution of partial differential equations using structured-grid-based discretizations can be challenging when the 
solution domain has significant geometric structure or is more easily expressed in non-Cartesian coordinates. For instance, 
in the simulation of the plasma near the edge of a tokamak fusion reactor, coordinates defined by the magnetic field 
are advantageous. As shown in Fig. 1(a), the single-null topology of the magnetic field in the edge region [33,42] (shown 
in a poloidal cross-section) possesses both open and closed field lines separated by a separatrix – a flux surface that is 
self-intersecting. There is no simple mapping of a single rectangular domain to this edge geometry.

Other examples of solution domains that are more easily expressed in non-Cartesian coordinates include the interior of 
a star or planet and the atmosphere, which is effectively a thin shell over a spherical surface. Although spherical coordinates 
can be used for both of these cases, they pose difficulties because of the singularities at the center and at the poles.

While mapped-grid approaches based on a single, rectangular Cartesian mesh have the advantage of simplicity and 
regular access patterns due to the mesh structure, these approaches are extremely limited in the types of domains they can 
represent well. In contrast, fully unstructured approaches can more easily represent complex geometry, but these require 
additional storage of mesh associativity data. A popular alternative is to use multiblock meshes (also known as composite 
patches or zonal grids), where the domain is decomposed into multiple sub-domains that each map to a rectangular block. 
The complicated tokamak edge geometry, for instance, can be mapped to eight rectangular subdomains that connect at the 
intersection point of the separatrix, the X-Point, as shown in Fig. 1(b).
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Fig. 1. Poloidal cross section of the single-null magnetic field geometry in a tokamak fusion reactor showing (a) the edge and core regions and the separatrix 
that separates open and closed magnetic field lines and (b) the decomposition of the single-null domain into eight blocks.

Mapped multiblock grids and, more generally, composite grids (including overset and patch-based refinement) have been 
used in the solution of partial differential equations (PDEs) since the 1970s [22,34]. A substantial amount of development 
was done in the computational aerodynamics community for external flows around complex bodies. The Cubed Sphere [31]
is a type of multiblock grid that has also been developed for solving PDEs on a spherical surface; in [39], this grid is used 
with a high-order finite-volume method to solve the shallow-water equations. There is a rich literature on the subjects of 
mapped and multiblock grids that is too extensive to summarize here; we refer the interested reader to several review 
articles [2,35,37].

The starting point for the present work is the high-order finite-volume method in Colella et al. [10]. The advantage of this 
approach is that it is strongly conservative in the sense of [40,41], high-order accurate, and freestream-preserving. It also 
has the advantage of using a smoothly-varying structured grid for its underlying discretization of space. Discretizations on 
such grids preserve many of the desirable properties of discretizations on Cartesian grids, such as cancellation of error in 
centered differences, and relatively simple quadrature rules for computing averages over cells and faces. We extend this 
method to the case of mapped multiblock grids, in which the computational domain in physical space is represented as the 
disjoint union of images of mappings that are conforming, meaning that they are aligned at common boundaries in such 
a way that when the maps are discretized, the individual faces of control volumes at those boundaries coincide. To maintain 
the mapped-grid formalism constraint that mappings are sufficiently differentiable, we define local mappings for each block 
that, beyond being conforming, need not coincide in any other way. By using a smooth continuation of each mapping 
beyond its block boundary, we reduce the problem of inter-block communication to that of the accurate interpolation of 
solution values from neighboring blocks into the halo regions.

Interpolation between neighboring grids is a common problem in multiblock, overset, and patch- and block-based 
adaptive mesh refinement (AMR) methods. A variety of polynomial interpolation techniques on both solution values and 
interface fluxes have been developed [9,29,30,32]. A major concern has been interpolation procedures that ensure conser-
vation [6,9,29,30] and stability [5,28,29]. Here, since the blocks share only a lower-dimensional interface (the PDEs are not 
solved in the halo regions), conservation is easily ensured by using consistent interface fluxes on the block boundaries. The 
main challenge, instead, is identifying a suitable stencil over which to interpolate. As in overset or AMR techniques, the 
halo extensions beyond a block may overlap multiple blocks, particularly in the vicinity of mesh singularities. Identifying a 
suitable collection of cells from the original block and its neighbors is therefore not trivial. In the fully unstructured and 
“mesh-free” computational-fluid-dynamics literature, one technique for reconstruction is least-squares interpolation [3,4,8,
15,19,23,24,27], which does not presume any underlying spatial relationship between the values used in the interpolation. 
This is the approach we take here. The K -exact reconstruction of Barth [4] uses averages on a selected number of neigh-
boring cells to reconstruct a polynomial that reproduces exactly polynomials of degree up to K and preserves the average 
value within the computational cell, but our procedure, which is used to find that average value within the computational 
cell, is not required to be K -exact.

Although less common for structured grids, least-squares reconstruction is intrinsic to the genuinely multi-dimensional, 
high-order, Central Essentially Non-Oscillatory (CENO) finite-volume schemes [16–18,36,38] that have been successfully ap-
plied in 2D and 3D to inviscid and viscous compressible flow, reacting turbulent flow, and ideal magnetohydrodynamics on 
body-fitted, multiblock grids with block-based adaptive mesh refinement. In particular, the CENO approach has been ap-
plied to a block-adaptive cubed-sphere grid [17,18], where the least-squares reconstruction in the flux calculation produces 
a uniformly high-order solution, even at points of reduced connectivity. In contrast, our use of least-squares interpolation 
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