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Solving wave propagation problems within heterogeneous media has been of great interest
and has a wide range of applications in physics and engineering. The design of numerical
methods for such general wave propagation problems is challenging because the energy
conserving property has to be incorporated in the numerical algorithms in order to
minimize the phase or shape errors after long time integration. In this paper, we focus
on multi-dimensional wave problems and consider linear second-order wave equation
in heterogeneous media. We develop and analyze an LDG method, in which numerical
fluxes are carefully designed to maintain the energy conserving property and accuracy.
Compatible high order energy conserving time integrators are also proposed. The optimal
error estimates and the energy conserving property are proved for the semi-discrete
methods. Our numerical experiments demonstrate optimal rates of convergence, and show
that the errors of the numerical solutions do not grow significantly in time due to the
energy conserving property.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Wave propagation is a fundamental form of energy transmission, which arises in many fields of science, engineering
and industry, and it is significant to geoscience, petroleum engineering, telecommunication, and the defense industry (see
[23,32] and the references therein). Efficient and accurate numerical methods to solve wave propagation problems are
of fundamental importance to these applications. Experience reveals that energy conserving numerical methods, which
conserve the discrete approximation of the energy, are favorable because they are able to maintain the phase and shape of
the waves accurately, especially for long time simulation. In [43], we have designed a high order accurate energy conserving
local discontinuous Galerkin (LDG) method for the one-dimensional second-order wave equation with constant coefficient.
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In this paper, we focus on multi-dimensional problems in heterogeneous media, and develop optimally convergent LDG
methods which also conserve the energy in the discrete sense.

The wave equation can be written in a second-order form, or an equivalent first-order hyperbolic system. Directly solving
the second-order equation usually involves fewer unknown variables, therefore the resulting numerical schemes are more
efficient. This saving can be significant in the three-dimensional applications. For example, for the linear elasticity equa-
tions in three dimensions, three variables are used in the second-order form, while first-order system needs at least nine
components [6]. In addition, there are many applications where the second-order PDEs arise naturally. When converted
into first-order systems, they may admit a wider class of solutions, therefore some constraints are needed to ensure that
these solutions are solutions of the original second-order equation, which also increases difficulty to the design of numerical
methods. Finally, it was also shown [3] that the second-order equation may allow larger time step size, compared to the
first-order system.

A vast amount of literature can be found on the numerical approximations of the second-order wave equation. The most
common numerical method for solving the wave equation is to use the second order accurate centered finite difference
operator. One major component in designing such finite difference methods which conserve the energy numerically is
the Summation By Parts (SBP) operator, with special attention paid near the boundaries. There have been many studies
on this subject (see [42] and the references therein). While finite difference methods provide efficient solvers, they are
largely limited by the geometry of the domain, although some attempts [4] have been made to circumvent this difficulty. In
contrast, finite element methods have the flexibility in handling complex geometry. Safjan and Oden [40] introduced a family
of unconditionally stable high order Taylor–Galerkin schemes for acoustic and elastic wave propagation. Faccioli et al. [24]
used explicit Fourier–Legendre domain decomposition methods and focused on the numerical validation of the methods.
Spectral methods for acoustic and elastic waves have been developed in [35,45], and a mortar coupling between spectral
and finite elements methods for elastodynamic problem on complex geometries can be found in [9]. Spectral element
methods are shown to conserve energy when applied to the wave equations [2,27]. We refer to [19,28] for a review of
previous work on spectral and spectral element methods. Here, we will confine our attention in discontinuous Galerkin (DG)
methods, which have the advantages of being local (versus global), easy h-p adaptivity and being able to handle hanging
nodes, compared with spectral element methods. DG methods can be viewed as spectral element methods with domain
decomposition. They belong to a class of finite element methods using discontinuous piecewise polynomial spaces for both
the numerical solution and the test functions. They were originally devised to solve hyperbolic conservation laws with only
first order spatial derivatives, e.g. [13–15,17,18]. They allow arbitrarily unstructured meshes, and have compact stencils.
Moreover, they easily accommodate arbitrary h-p adaptivity. DG methods were later generalized to the LDG methods by
Cockburn and Shu to solve convection–diffusion equations [16], motivated by successful numerical experiments from Bassi
and Rebay [7] for the compressible Navier–Stokes equations. Recently, Zhong and Shu [46] studied the question of how
many grid points (degrees of freedom) per wave length are needed to achieve a given accuracy for the DG method applied
to the linear wave equation, following the classical error analysis by Kreiss and Oliger [34] for the finite difference methods.

Many DG methods have been developed for the wave equation in both first-order and second-order forms [1,5,15,25,30,
37,39,40], and some of these methods are also energy conserving [11,26,29]. Two approaches are commonly used to achieve
the energy conserving property. The first one is to introduce two staggered mesh sets, and define one set of solution
on each mesh. This usually leads to more complexity, as staggered mesh may be difficult to construct, especially for high
dimensional complex domain and in the neighborhood of the boundary. Recently, Chung and Engquist [11,12] have proposed
an optimal, energy conserving DG method for the first-order wave equation using staggered grids. They introduced different
meshes for different computational variables, and are able to prove the optimal convergence for unstructured meshes. The
other approach to obtain energy conserving method is to use the central numerical flux [26], i.e., the numerical flux along
cell boundaries is evaluated by taking the average of two values of the numerical solution from the two neighboring cells.
However, only suboptimal convergence can be proven theoretically, and numerically, one can observe optimal convergence
if even order polynomial space is used, and suboptimal if odd order polynomial space is used.

Usually it is difficult to obtain DG schemes for wave equations which are non-dissipative (energy conserving for the
physical energy) and optimal high order accurate. In [43], we have designed an energy conserving LDG method for the
simple one-dimensional second-order constant coefficient wave equation. We have proved that the proposed method has
the optimal convergence rates in both the energy and L2 norms, and the upper bound of the errors grows in time only
in a linear fashion. In this paper, we consider the multi-dimensional wave problems in heterogeneous media. Extension of
the previous work to the multi-dimensional problems on Cartesian meshes is discussed. Extra attention needs to be paid at
the interface of different media to ensure the stability and energy conservation. Theoretical proof, as well as the numerical
evidence, indicates that a good choice of the projection of the initial condition into the polynomial space is important to
achieve optimal convergence rate. The semi-discrete LDG method will be coupled with high order explicit energy conserving
time discretization. We remark here that since our scheme is non-dissipative, it is more oscillatory than the commonly used
upwind (energy-dissipative) DG method when applied to problems with discontinuities. The advantage of energy conserving
methods is to solve smooth wave problems, with the attempt to resolve all waves for long time periods.

The outline of our paper is as follows. In Section 2, we present the semi-discrete LDG method, and prove its energy
conserving property. The optimal error estimates, both in the energy norm and the L2 norm, are analyzed in Section 3,
and therein, the upper bound of errors is proved to grow linearly in time. The fully discrete LDG method, with the high
order energy conserving time discretization, and its energy conserving properties are presented in Section 4. Section 5
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