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A new high-order method for the accurate simulation of incompressible wall-bounded
flows is presented. In the stream- and spanwise directions the discretisation is performed
by standard Fourier series, while in the wall-normal direction the method combines high-
order collocated compact finite differences with the influence matrix method to calculate
the pressure boundary conditions that render the velocity field exactly divergence-free. The
main advantage over Chebyshev collocation is that in wall-normal direction, the grid can
be chosen freely and thus excessive clustering near the wall is avoided. This can be done
while maintaining the high-order approximation as offered by compact finite differences.
The discrete Poisson equation is solved in a novel way that avoids any full matrices and
thus improves numerical efficiency. Both explicit and implicit discretisations of the viscous
terms are described, with the implicit method being more complex, but also having a wider
range of applications. The method is validated by simulating two-dimensional Tollmien–
Schlichting waves, forced transition in turbulent channel flow, and fully turbulent channel
flow at friction Reynolds number Reτ = 395, and comparing our data with analytical and
existing numerical results. In all cases, the results show excellent agreement showing that
the method simulates all physical processes correctly.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In the last few decades, Direct Numerical Simulations (DNS) where all scales of motion are resolved, have proven very
useful to investigate the features and properties of incompressible wall-bounded turbulent flows. The simulation of these
flows is a challenging area with high demands on the accuracy and efficiency of the code, which are amplified by the
ever-continuing need for simulating flows at higher Reynolds numbers [1]. A major issue when solving the governing three-
dimensional incompressible Navier–Stokes equations is the lack of an evolution equation for the pressure. Instead, the
pressure is present in the momentum equations and instantaneously corrects the velocities such that the continuity equa-
tion is satisfied, i.e. the divergence of the velocity field is equal to zero. Different methodologies have been developed to
deal with this issue.

Probably the most popular approach is the pressure correction or fractional step method [2]. Here, the integration over
one time step is split into three parts. In the predictor step, an intermediate velocity field is calculated without taking into
account the pressure. Secondly, a Poisson equation for the pressure is solved. Lastly, in the corrector step, the intermediate
velocity is projected by the pressure onto a divergence-free field. However, even though the method is widespread, there
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are still unresolved issues regarding the choice of boundary conditions for the pressure when solving the Poisson equation.
Usually, boundary conditions are derived by extrapolating the velocities and pressure gradients from previous time steps
[3,4]. This introduces splitting errors in the integration scheme reducing the maximum allowable time step that ensures
numerical stability and thus decreasing the efficiency of the method. The method is mainly applied on a staggered grid
[5,6] to avoid checkerboard patterns in the solutions stemming from odd–even decoupling. Although a staggered grid has
proven very useful in some cases, it also has its disadvantages, namely that it requires frequent interpolation, which can
introduce unwanted filtering and complicate implementation.

One way to avoid this problem is to write the Navier–Stokes equations in vorticity–velocity (VV) form [7–10] by taking
the curl of the momentum equations. This eliminates the pressure and gives a set of evolution equations for the vorticity
and a set of elliptic equations relating the vorticity to the velocities. Boundary conditions for the vorticity are required but
not known, such that similar issues arise as in the fractional step method where boundary conditions for the pressure are
unknown.

A third method is the influence matrix (IM) method [11–13]. In this case as well, a Poisson equation for the pressure is
derived that replaces the continuity equation in the interior of the flow domain. For problems with non-periodic boundaries
in one dimension, this results in a sequence of one-dimensional scalar Helmholtz equations, which is solved to calculate
the pressure boundary conditions that after applying a correction step render the entire velocity field divergence-free. The
advantage of this method is that continuity is fulfilled exactly in the discretised equations. It can also be applied on a
collocated grid, thus avoiding interpolation that can cause unwanted filtering effects. Reuter and Rempfer [14] use this
method to simulate turbulent pipe flow (although they make no mention of the correction step), while Tuckerman [15]
derives a generalised and more formal method for other geometries. When comparing the IM method with the VV method,
we see that both have the issue of missing boundary conditions, for the pressure in the former, for the vorticity in the
latter method. The commonly used method to calculate the missing boundary conditions is similar for the two methods. An
advantage of the IM method is that the pressure is one of the unknowns and thus follows immediately from the calculation,
while in the VV method an extra equation needs to be solved to obtain the pressure. Furthermore, the IM method is more
straightforward to extend to other geometries. The VV method has been found to give stability issues when using cylindrical
coordinates to simulate turbulent pipe flow [16].

All of the examples mentioned implement the IM method with Chebyshev polynomials in the wall-normal direction.
Although the use of Chebyshev collocation is widespread in the simulation of wall-bounded flows, it also has its restric-
tions. With simulations of wall-bounded flows being performed at ever rising Reynolds number (Reτ = 10000 should be
reached in the foreseeable future [17]), these restrictions are being exposed and we feel there is a need for a new code
that is not subject to these restrictions. The restriction is that the prescribed grid when using Chebyshev collocation is
the Gauss–Lobatto–Chebyshev grid which follows a cosine distribution. The high resolution required to resolve all scales
at high Reynolds number simulations causes an extremely clustered grid near the wall for this grid. For example, 3841
Gauss–Lobatto–Chebyshev points are required for a simulation at Reτ = 10000 if a maximum spacing of 8 viscous units
at the centre of the channel is prescribed. This grid has 56 points within the first 10 viscous units near the wall and a
minimum spacing of �y

+
min = 0.0034. As a result the maximum allowable time step becomes so small that it is not feasible

any more to run a simulation for a sufficient amount of time. Because of the numerical issues caused by extreme clustering
of gridpoints, there exists a desire to have more freedom in the allocation of the grid points in the wall-normal direction.
An alternative is to use compact finite differences on a staggered grid, but this requires frequent interpolation that might
cause unwanted filtering effects. Therefore, we use compact finite differences on a collocated grid. Compact finite difference
schemes are summarised by Lele [18] and show good resolution characteristics over a large range of wavenumbers while
maintaining the freedom to choose the grid points and boundary conditions. Because this grid can be freely chosen, extreme
clustering can be prevented and thus the time step restriction is not as severe.

The viscous terms can be treated explicitly or implicitly. The equations are simpler when they are treated explicitly, but
this does impose more severe restrictions on the maximum allowable time step in certain flow cases. Kleiser and Schumann
[12] use an implicit discretisation for the viscous terms to avoid this severe time step limitation, while Simens et al. [19]
suggest that in a turbulent boundary layer the viscous time step limit is only critical in the wall-normal direction, so that is
the only direction they treat implicitly. Thus, they treat the viscous terms in the stream- and spanwise directions explicitly.
Akselvoll and Moin [20] give a clear dissection of the terms that can be treated explicitly and the terms that need to be
treated implicitly in different parts of the domain (near the axis and near the wall) when simulating turbulent pipe flow.
We describe a general method of which the explicit scheme is a special case. The results and numerical efficiency of both
methods are shown and discussed in separate sections.

In this paper, we present a new method to simulate wall-bounded flows. The aim of this method is to simulate these
flows at high Reynolds number in an efficient way. We extend the IM method to allow the use of compact finite differences,
which gives the user the freedom to choose the location of the grid points and thus providing more flexibility. To validate
the method we perform low-Reynolds number simulations and compare with analytical and existing results.
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