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We propose several modifications to the grid based particle method (GBPM) [21] for
moving interface modeling. There are several nice features of the proposed algorithm.
The new method can significantly improve the distribution of sampling particles on the
evolving interface. Unlike the original GBPM where footpoints (sampling points) tend
to cluster to each other, the sampling points in the new method tend to be better
separated on the interface. Moreover, by replacing the grid-based discretization using the
cell-based discretization, we naturally decompose the interface into segments so that we
can easily approximate surface integrals. As a possible alternative to the local polynomial
least square approximation, we also study a geometric basis for local reconstruction
in the resampling step. We will show that such modification can simplify the overall
implementations. Numerical examples in two- and three-dimensions will show that the
algorithm is computationally efficient and accurate.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Interfacial motion can be found in many applications in science. It is therefore very important to develop an efficient
and flexible yet simple numerical representation for various modelings. Roughly speaking, we can classify existing numerical
methods for moving interface problems into two categories according to the way how the interface is numerically repre-
sented. The first category is tracking methods, in which the interface is explicitly represented by Lagrangian marker particles
and its dynamics is tracked by the motion of these particles. For example, boundary integral methods [14,28], boundary el-
ement methods, front tracking method [10,37,41], etc. belong to this type. The second class is capturing methods, in which
the interface is implicitly embedded in a scalar field function defined on a fixed mesh, such as a Cartesian grid. The interface
dynamics is captured by the evolution of the scalar function in an Eulerian framework. Main representatives include the
level set methods [27], phase field method [1,5], volume of fluid method [13], to name just a few. Recently, there are various
interesting works to combine these Lagrangian and Eulerian approaches for moving interface problems, such as the level
contour reconstruction methods [32,33], a front tracking method with an underlying grid [9], the particle level set method
[6] and some related methods [12], the dynamic surface extension method [36], the fixed grid method in [30] and a closely
related vector level set method in [40].

In [21] we have proposed a novel framework to model interface motions. The method naturally combines and takes
advantages of both the Lagrangian (explicit) and the Eulerian (implicit) formulations. The basic idea is to represent and track
the interface explicitly as in the usual Lagrangian methods using quasi-uniform meshless particles, while an underlying
Eulerian grid serves as a reference for those particles. Even though the original GBPM [20–22] has already shown some

* Corresponding author.
E-mail addresses: yshon@ust.hk (S.Y. Hon), masyleung@ust.hk (S. Leung), zhao@math.uci.edu (H. Zhao).

http://dx.doi.org/10.1016/j.jcp.2014.04.032
0021-9991/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2014.04.032
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:yshon@ust.hk
mailto:masyleung@ust.hk
mailto:zhao@math.uci.edu
http://dx.doi.org/10.1016/j.jcp.2014.04.032
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2014.04.032&domain=pdf


280 S.Y. Hon et al. / Journal of Computational Physics 272 (2014) 279–306

promising results, we would like to propose several new modifications to the method to further improve its efficiency
and its ease in implementation. According to [21], the GBPM provides an automatic redistribution of the sampling particle
according to the underlying mesh. These sampling points (footpoints) are chosen to be the L2-projection of all grid points in
a neighborhood of the interface. We can therefore obtain a quasi-uniform sampling of the interface. Although we can control
the maximum distance between two adjacent footpoints on the interface, the non-uniform behavior comes from the fact
that there is no mechanism to bound the distance from below, i.e. we do not have any bound like |yi − yi+1| > O (h) where
yi and yi+1 are two adjacent footpoints, and h is the underlying mesh size. For example, considering a uniform underlying
Cartesian mesh in the two dimensional cases with a straight interface parallel to an axis direction, we obtain multiple
footpoints projected onto the same locations. This means that (yi − yi+1) could in fact be zero and the footpoint-grid point
map may be far from one-to-one.

Another challenge to the GBPM is that it is not straight-forward to develop high order accurate numerical quadrature
rules along the interface. Surface integrals arise in many circumstances including the boundary integral method [14,28] and
the boundary element method [3], where the solution is represented by integrals along its interface. The original GBPM
proposed in [21] can indeed evaluate the integral by approximating the interface by piecewise connected linear function.
For instance, we can keep track of a global parametrization associated to each footpoint. This provides an ordering of the
interface which can be used to approximate �si in the Trapezoidal rule∫

Σ

f (s)ds �
∑

i

f i�si .

The idea has recently been applied in [22] to integrate Gaussian beam solution to high frequency wave propagation. How-
ever, since the interface is approximated using only a low order reconstruction, the integration results are in general less
accurate. Another approach has recently been used in [23] by first converting the GBPM representation to a signed distance
function as in the level set method [27]. Then the integral can be computed using the δ-function formulation.

One main contribution of this paper is the following modifications to the original GBPM method which can naturally
decompose the interface into a summation of high order disconnected segments. Given a computational domain Ω , we
partition it into a union of cells, i.e. Ω = ⋃

i, j Ωi, j . If we divide the domain into a sum of rectangles with sides �x and �y,
we can interpret this cell-type discretization as the staggered version of the original discretization described in [21]. The
main difference here is that we denote pi, j the cell-center, rather than the vertices of a cell (corresponding to a grid point in
[21]). Moreover, in the case of triangulating Ω into a sum of triangles or tetrahedral, this cell-based is more natural. Relating
to the cell-based domain partition, one simple modification is to activate only those cells which contain a segment of the
interface. This activation criterion automatically partition the interface into a summation of segments. There are advantages
of such an interface partition representation. For example, to visualize the solution in the level set representation, one has
to post-process the level set function in order to extract the interface. In the original GBPM, one either simply plots the
computed unconnected footpoints or reconstructs a level set representation in order to get an explicit curve for the same
interface. In this proposed representation, we have a local closed form representation of the interface within each cell. This
allows us to easily approximate any integral within each cell. In this paper, we will further apply the method to study some
integral-dependent evolutions of an interface. This application will be important in various fields including multiphase flow
modeling using a weak formulation [2], or high frequency asymptotic solutions to the wave equation or the Schrödinger
equation [18,19,22]. Since this overall algorithm is a cell-based representation, we name the proposed numerical approach
the Cell-Based Particle Method (CBPM).

To simplify the resulting algorithm from the above activation criterion, we can simply replace the L2-projection in the
definition of the footpoint [21] by the L∞-projection in the Cartesian mesh, or the projection based on the area coordinates
in the triangular mesh. If the underlying cells are Cartesian, we can determine the footpoints by

min
s

∥∥f(s) − p
∥∥∞,

where p is the coordinates of the mesh point and f is the parametrization of the interface. If this L∞-distance is smaller than
�x/2 (for �x = �y), the cell intersects with the interface. This condition therefore naturally matches with the activation
condition in practice.

In the original GBPM, the reconstruction is done in a local coordinate system where one assumes the interface can
be treated as a graph and is well-approximated by a local polynomial. This can still be easily done in the current CBPM
representation. In this work, we also study an alternative to this extrinsic polynomial least squares fitting by considering
the intrinsic fitting based on geometric basis. In particular, we locally approximate the interface in two dimensions using
straight lines or circles. Therefore, no local coordinate system is required. Furthermore, since the interface is approximated
using such simple geometric basis, it significantly simplifies many numerical differential operators defined on the manifold.

The paper is organized as follows. We will briefly summarize the GBPM in Section 2. In Section 3 we will introduce the
proposed CBPM. Detailed descriptions of various steps in the algorithm will also be given. To further simplify various part
of the algorithm, we propose in Section 4 to incorporate the geometric basis for local reconstruction. Convergence tests and
numerical examples are given in Section 5 to demonstrate the effectiveness of the method.
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