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We present a new family of mimetic finite difference schemes for solving elliptic partial
differential equations in the primal form on unstructured polyhedral meshes. These
mimetic discretizations are built to satisfy local consistency and stability conditions. The
consistency condition is an exactness property, i.e., the mimetic schemes are exact when
the solution is a polynomial of an assigned degree. The stability condition ensures the
well-posedness of the method. The degrees of freedom are the solution moments on mesh
faces and inside mesh cells. Higher order schemes are built using higher order moments.
The developed schemes are verified numerically on diffusion problems with constant and
spatially variable (possibly, discontinuous) tensorial coefficients.

Published by Elsevier Inc.

1. Introduction

The mimetic discretization framework has been developed to solve PDEs on arbitrary polygonal and polyhedral
meshes [11]. In contrast to finite volume methods [22] that can also handle general meshes, it has a solid mathemati-
cal foundation based on a discrete vector and tensor calculus [28]. Thus, the resulting discrete schemes preserve or mimic
important properties of continuum PDEs such as symmetry and positivity of discrete operators, exact discrete identities, and
discrete Helmholtz space decompositions. In this paper, we exploit flexibility of the mimetic framework to mix and match
degrees of freedom of various nature to develop a new family of mimetic finite difference (MFD) schemes for the diffusion
equation.

The development of the MFD method has a long history. It has been applied successfully to a wide range of scientific and
engineering problems, such as continuum mechanics [33], discretization of differential forms [14,34], electromagnetics [16,
25,27], gas dynamics [18], linear diffusion equation [2,12,17,20,26,29,30], convection–diffusion equation [6,21], steady Stokes
equations [7–10], elasticity [3], elliptic obstacle [1], Reissner–Mindlin plates [13], eigenvalues [19] and two-phase flows in
porous media [31].

Due to the importance of discrete conservations laws for engineering simulations, the MFD schemes were originally
developed for systems of PDEs formulated using first-order differential operators. The discrete operators are constructed in
pairs: first principles are used to discretize one operator (e.g. primary gradient, divergence, and curl), and discrete duality
relationships are used to derive the second discrete operator (respectively, derived divergence, gradient, and curl).
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In [15], it was realized that two underlying discretization principles guiding construction of the derived mimetic oper-
ators, named consistency and stability, can be applied to primal formulations of PDEs. More precisely, the resulting MFD
method builds a discrete bilinear form Ah that approximates the continuum form A and preserves its kernel. This construc-
tion is done cell-by-cell like in the finite element method (FEM). In contrast to the FEM, there is no analog of a unisolvency
condition that often makes construction of high-order elements a non-trivial task. The mimetic framework allows us to use
variable number of degrees of freedom per cell that can be associated with different geometric objects and have different
meaning (e.g. pointwise values, moments, or projection of vector functions on face normals). Usage of additional degrees of
freedom to simplify the construction violates the unisolvency condition but does not break the convergence and stability
properties. It simply leads to a parametric family of mimetic schemes that can be further analyzed for existence of schemes
with additional properties such as the discrete maximum principle [29].

In [9], the consistency and stability conditions are developed for arbitrary-order mimetic schemes for elliptic equations
in two dimensions. The consistency condition is formulated as an exactness property for polynomials of a given degree.
On its turn, the stability condition enforces the coercivity of the discrete bilinear form and, eventually, the well-posedness
of the resulting mimetic scheme. Extension of these schemes to three dimensions requires the construction of high-order
quadrature rules for polygonal faces of polyhedral cells. Such quadrature rules are not available for an arbitrary polygon and
their numerical construction will make the method too expensive. The polygonal FEMs also suffers of this issue [32,35–39],
which is overcome only by the Galerkin reformulation of the mimetic methods, recently proposed as “the virtual element
method” in [4].

In this paper, we resolve this issue using a special choice of the degrees of freedom. Instead of using nodal degrees of
freedom, which may be associated with either the mesh vertices and other special nodes on the cell interfaces, we use
solution moments on faces and inside cells. The construction requires to calculate moments of only polynomial functions
which is a problem with a well-known solution. The new mimetic schemes are suitable to the numerical approximation
of two- and three-dimensional elliptic problems at any order of accuracy on an arbitrary polygonal or polyhedral mesh.
It is worth mentioning that this kind of approximation shares many characteristics with the non-conforming finite element
method, and, for this reason, we might refer to it as the non-conforming mimetic method.

The paper is organized as follows. In Section 2, we introduce the model problem, we briefly review the basic concepts
of mimetic discretizations, and we describe the construction of the new non-conforming mimetic method. In Section 3
we prove the consistency and stability of the proposed mimetic method. In Section 4 we discuss two special cases where
the general formulation is significantly simpler: the low-order approximation and the non-conforming mimetic method
(of any order of accuracy) for problems with constant diffusion tensors. In Section 5, we study the performance of the
proposed method for the numerical resolution of problems with smooth and discontinuous coefficients. Final conclusions
are in Section 6.

2. The mimetic finite difference method

In this section, we introduce the model problem, we give a brief overview of the basic concepts of the MFD method, and
we describe the construction of the new non-conforming mimetic method.

2.1. Model problem

The steady diffusion problem for the scalar solution field u is governed by the following equation:

−div(K∇u) = f in Ω, (1)

u = g on Γ, (2)

where Ω ⊂ R
3 is a polyhedral domain with Lipschitz boundary Γ , K is a diffusion tensor describing material properties,

f ∈ L2(Ω) is a given loading term, and g ∈ H
1
2 (Γ ) is a given function. We assume that K is a bounded, measurable, and

symmetric tensor in (W 1,∞(Ω))3×3. We also assume that K is strongly elliptic, i.e., there exist two positive constants κ∗
and κ∗ such that

κ∗‖v‖2 � v · K(x)v � κ∗‖v‖2 ∀v ∈R
3, ∀x ∈ Ω,

where ‖v‖ is the Euclidean norm of vector v. The strong ellipticity implies that matrix K(x) is strictly positive definite and
thus non-singular for every x ∈ Ω .

We consider the affine subspace of H1(Ω),

Vg = {v ∈ H1(Ω)
∣∣ v |Γ = g

}
,

and the linear subspace V0 for g = 0. Let us introduce the bilinear form

A(u, v) =
∫
Ω

K∇u · ∇v dV (3)
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