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A numerical method is developed to solve the time-dependent Dirac equation in cylindrical
coordinates for 3-D axisymmetric systems. The time evolution is treated by a splitting
scheme in coordinate space using alternate direction iteration, while the wave function is
discretized spatially on a uniform grid. The longitudinal coordinate evolution is performed
exactly by the method of characteristics while the radial coordinates evolution uses
Poisson’s integral solution, which allows to implement the radial symmetry of the wave
function. The latter is evaluated on a time staggered mesh by using Hermite polynomial
interpolation and by performing the integration analytically. The cylindrical coordinate
singularity problem at r = 0 is circumvented by this method as the integral is well-defined
at the origin. The resulting scheme is reminiscent of non-standard finite differences. In the
last step of the splitting, the remaining equation has a solution in terms of a time-ordered
exponential, which is approximated to a higher order than the time evolution scheme.
We study the time evolution of Gaussian wave packets, and we evaluate the eigenstates
of hydrogen-like systems by using a spectral method. We compare the numerical results
to analytical solutions to validate the method. In addition, we present three-dimensional
simulations of relativistic laser–matter interactions, using the Dirac equation.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The Dirac equation is among the most important equations in theoretical physics and chemistry as it gives a quantum
relativistic description of fermions such as electrons and quarks. When these particles are moving at very high velocity
or when they are bound by very strong classical fields, the non-relativistic modeling based on the Schrödinger equation
fails and theoretical investigations should be based on the Dirac equation. The extreme conditions where relativistic effects
are important can be found in many areas such as relativistic heavy ion collisions, heavy ion spectroscopy, cosmology,
astrophysics, and more recently, in laser–matter interactions (for a review, see [1] and references therein) and condensed
matter physics [2]. For this reason, the Dirac equation, coupled to an electromagnetic field, has been studied extensively to
evaluate many observables such as electron–positron production, molecule spectra, molecular ionization rates, and others.
However, solving this equation remains a very challenging task because of its intricate matrix structure, its unbounded
spectrum (the Dirac operator has negative energy states which forbid the use of naive minimization numerical methods [3])
and its multiscales (typically for the applications of interests in this paper, the electromagnetic field is macroscopic, with
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a time scale of tE&M ∼ 0.1–100 fs = 0.1–100 × 10−15 s, while the electron motion, as in the zitterbewegung process, has a
time scale of tel ∼ 1 zs = 10−21 s, [4]).

Existing approaches to tackle these important problems can usually be classified into three categories. The first one is
the analytical method which aims at finding closed-form solutions. Although many important problems were treated in this
way [4,5], it only allows the study of idealized systems. The second approach is the semi-classical approximation which can
be used to study more complex configurations than the analytical method (see [6] for instance). However, it is only valid for
a certain range of wave function parameters, which may not be realized in the physical system under study. The last one is
based on full numerical approximations which in principle, can be used to investigate any physical systems. However, even
on the numerical side, the solution of the Dirac equation is a challenging problem: it requires a lot of computer resources [7]
and certain numerical schemes are plagued by numerical artifacts such as the fermion doubling problem [7–10]. Therefore,
special cares have to be taken to resolve these issues when solving the Dirac equation numerically for physically relevant
systems.

Among the most successful numerical methods solving the Dirac equation, many are based on a split-step scheme (or
split-operator method) where the Dirac Hamiltonian is separated in several operators. This has been used in conjunction
with spectral schemes in [11–15] for the Dirac equation, in [16,17] to solve the coupled Maxwell–Dirac system of equations
and in [18] for the nonlinear Dirac equation. Very accurate results (with spectral convergence) were obtained with these
methods. However, one of the main drawbacks is that the computation time scales like O (N log N) (where N is the number
of spatial points in the discretization) as a Fourier transform has to be computed at every time step. Galerkin methods
based on basis function expansion and Fourier mapped methods have been utilized in the study of heavy ion collisions
and to compute the pair production rate [19,20]. “Real space” methods were also derived using finite element schemes
[9,21] and finite difference schemes (both explicit [22] and implicit [23–25]). More specifically, a leapfrog scheme on a
staggered grid was recently considered [26]. However, some of these “real space” methods suffer from the fermion doubling
problem [8,27] which induces numerical artifacts and can lead to inaccurate solutions. This occurs because the real-time
discretization usually modifies the dispersion relation [8] such that traveling wave packets acquire a wrong group velocity.
Consequently, the phase of a traveling wave packet cannot be reproduced accurately by numerical methods suffering from
fermion doubling, even when the order of convergence is increased [28].

Recently, a simple numerical method was developed which uses a split-step scheme in “real space” and the method of
characteristics to evolve the wave function in time, while the space discretization is performed with finite volume elements
[29,30]. This numerical scheme has in fact close connections with the Quantum Lattice Boltzmann technique [31]. In this
setting, exact solutions in coordinate space can be used in most steps of the splitting (by choosing carefully the time
increment δt and the element size a), resulting in a scheme which is free from the fermion doubling problem1) and which
can be parallelized very efficiently [30]. This makes for a very powerful and robust numerical technique which allows to
study physical systems in Cartesian coordinates, in any number of dimensions. However, for 3-D systems, the computational
cost is still very important and thus, only short time events can be treated in that case (such as heavy ion collisions
which last for approximately tRHIC ∼ 10−23–10−22 s). For longer events, such as laser–matter interactions (with tpulse ∼
10−18–10−13 s), only 2-D calculations are possible and therefore, different strategies have to be developed to cope with
the high computational requirements. One solution is to reduce the 3-D problem to a 2-D problem by using symmetry
arguments. In this work, we adopt this point of view and study systems which are azimuthally symmetric. For this reason,
we extend the split-step scheme to solve the Dirac equation in cylindrical coordinates.

The rationale to consider this coordinate system is twofold. First, many physical systems of interests have an azimuthal
symmetry and thus, can be treated in cylindrical coordinates. Two examples of this are heavy ion collisions at zero impact
parameter, and laser–atom interactions in a counterpropagating laser configuration. Second, it reduces the mathematical
description of a 3-D system to an equation in 2-D which of course, reduces the computation time significantly. On the
other hand, these coordinates introduce new complications in numerical calculations because the Dirac operator acquires
singular terms in the coordinate transformation (terms of the form 1/r where r is the radial distance). This complicates
the numerical evaluation of this operator on the boundary close to r = 0 (∂Ωr=0,θ,z , where Ωr,θ,z is the domain of the
wave function and where r ∈ R

+ , θ ∈ [0,2π ] and z ∈ R). This problem has been studied for other equations and many
solutions were developed for the Navier–Stokes (and other fluid-like) equations, such as the use of pole conditions [32],
shifted mesh [33] and series expansion close to the singularity [34]. A treatment of the singularity for the Schrödinger
equation in cylindrical coordinates can be found in [35] where it is shown that the accuracy of the numerical solution can
be improved by writing the differential operator in “self-adjoint form”. Finally, the Dirac equation with finite difference
scheme is treated in [22] where a filter is applied at very time-step to get rid of spurious oscillations close to r = 0.
In this work, we use another approach which consists of a splitting method analogous to the one presented in [29,30]
where alternate dimension iteration is performed. The splitting operators are chosen such that all the singular terms are
included in the radial evolution operator. The resulting equations can then be transformed into a set of four 2-D scalar wave
equations, expressed in polar coordinates. An integral representation of the solution of these equations can then be found:
it is the well-known Poisson formula. The latter can be evaluated by interpolating the wave function spinor components

1 In 1-D, the numerical dispersion relation is the same as the continuum dispersion relation, so there is no fermion doubling. In 2-D and 3-D, the
dispersion relation is reproduced exactly for each coordinate direction. The splitting however modifies slightly this relation for the propagation at an angle.
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