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In this paper, we develop an efficient numerical method for the two phase moving contact
line problem with variable density, viscosity, and slip length. The physical model is based
on a phase field approach, which consists of a coupled system of the Cahn–Hilliard
and Navier–Stokes equations with the generalized Navier boundary condition [1,2,5].
To overcome the difficulties due to large density and viscosity ratio, the Navier–Stokes
equations are solved by a splitting method based on a pressure Poisson equation [11],
while the Cahn–Hilliard equation is solved by a convex splitting method. We show that the
method is stable under certain conditions. The linearized schemes are easy to implement
and introduce only mild CFL time constraint. Numerical tests are carried out to verify the
accuracy, stability and efficiency of the schemes. The method allows us to simulate the
interface problems with extremely small interface thickness. Three dimensional simulations
are included to validate the efficiency of the method.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Moving contact line problem, where the fluid–fluid interface intersects the solid wall, is a classical problem that occurs
in many physical phenomena. It is well known that classical hydrodynamical models with no-slip boundary condition lead
to nonphysical singularity in the vicinity of the contact line [3]. A phase field model with generalized Navier boundary
condition (GNBC) is proposed in [1,3] to resolve the issue. It is shown that the numerical results based on the GNBC can
reproduce quantitatively the results from the MD simulation. This indicates that the new model can accurately describe the
behavior near the contact line. The model involves a coupled system of the Cahn–Hilliard and Navier–Stokes equations.

∂φ

∂t
+ v · ∇φ = M∇2μ, (1.1)

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇p + ∇ · [ηD(v)

] + μ∇φ + ρgext, (1.2)

∇ · v = 0, (1.3)

here p is the pressure, ηD(v) = η(∇v + ∇vT ) denotes the viscous part of the stress tensor, ρ,η are the fluid mass density
and viscosity; ρgext is the external body force density, and M is the phenomenological mobility coefficient; μ = −K∇2φ −
rφ + uφ3 is the chemical potential, and μ∇φ is the capillary force; K , r, u are the parameters that are related to the
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Fig. 1. Two-phase Couette flow with wall speed uw .

interface profile thickness ξ = √
K/r, the interfacial tension γ = 2

√
2r2ξ/3u, and the two homogeneous equilibrium phases

φ± = ±√
r/u (= ±1 in our case).

To describe the motion of the contact line, Eq. (1.2) is supplemented with the generalized Navier boundary condition at
top and bottom boundaries (Fig. 1).

βvslip
x = −η∂n vx + L(φ)∂xφ, (1.4)

where L(φ) = K∂nφ + ∂γw f (φ)/∂φ, and γw f (φ) = − 1
2 γ cos θ

surf
s sin( π

2 φ), θ
surf
s is the static contact angle; β is the slip

coefficient; vslip
x = vx − uw is the slip velocity, uw is the wall speed. The velocity field is denoted by v = (vx, vz) (see

Fig. 1), where vx, vz are velocities along x, z directions, n,τ are unit vectors orthogonal and tangential to the boundaries,
vn := v · n, vτ := v · τ . In addition, a relaxation boundary condition is imposed on the phase field variable φ at the top and
bottom boundaries:

∂φ

∂t
+ vx∂xφ = −Γ

[
L(φ)

]
, (1.5)

where Γ is a (positive) phenomenological parameter, together with the following impermeability conditions:

vz = 0, ∂nμ = 0. (1.6)

Here the variable density, viscosity and slip length are taken to be the volume average of those for the two flows, i.e.,

ρ = ρL

(
1 + φ

2

)
+ ρG

(
1 − φ

2

)
, η = ηL

(
1 + φ

2

)
+ ηG

(
1 − φ

2

)
.

Although this may be inconsistent with the continuity equation ρt + ∇ · (ρv) = 0 (when ρ is not a constant), it is shown in
[8] that the total mass is still conserved if the boundary conditions (1.6) are imposed.

There have been many work on developing efficient numerical methods for two phase flow with general variable density
and viscosity [7–11,13–15]. However, most of the work were on models for problems where the interface does not intersect
with the boundary. The main difficulty in those problems comes from the high (fourth) order derivatives and strong non-
linearity in the Cahn–Hilliard equation which introduces a strong stability constraint for the time step. Extra complexity is
introduced in the moving contact line model due to the generalized Navier boundary condition (1.4). For two phase system
with equal density and viscosity, we have developed an efficient gradient stable scheme [5]. The scheme is uncondition-
ally stable and has the property of total energy decaying. Another efficient scheme based on a least square/finite element
method is also proposed in [6].

Solving Navier–Stokes equations with large density ratios using projection method can be very time consuming since it
requires solving a variable-coefficient stiffness matrix (with very large condition number) at each time step. Guermond and
Salgado [11] proposed a splitting method for Navier–Stokes equations with variable density based on penalty techniques,
which only requires solving pressure Poisson equation with constant coefficient per time step.

In this paper, we develop a gradient stable scheme for the system (1.1)–(1.6). The scheme is based on a convex splitting
of the bulk free energy functional and the surface energy, and a splitting method based on the pressure Poisson equation
for Navier–Stokes equations. We show, under certain conditions, the scheme has the total energy decaying property and
is stable. Numerical tests are carried out to verify the stability, accuracy and efficiency of the scheme. We also compared
the performance of two types of Navier–Stokes solvers. It is verified that, the splitting scheme based on pressure Poisson
equation has similar accuracy as the projection method, but the splitting scheme is significantly more efficient in terms of
computational cost, making it more favorable in large scale simulations.

The rest of the paper is organized as follows. In Section 2, we derive the energy law for the PDE system. The numerical
scheme and discrete energy law are derived in Section 3. Numerical tests are performed and the results are analyzed in
Section 4. The paper concludes in Section 5 with a few remarks.



Download English Version:

https://daneshyari.com/en/article/520063

Download Persian Version:

https://daneshyari.com/article/520063

Daneshyari.com

https://daneshyari.com/en/article/520063
https://daneshyari.com/article/520063
https://daneshyari.com

