Accepted Manuscript

Biobased multiblock copolymers: Synthesis, properties and shape memory performance of poly(ethylene2.5-furandicarboxylate)-b-poly(ethylene glycol)

Guoqiang Wang, Min Jiang, Qiang Zhang, Rui Wang, Guangyuan Zhou

PII: S0141-3910(17)30232-X

DOI: 10.1016/j.polymdegradstab.2017.07.032

Reference: PDST 8311

To appear in: Polymer Degradation and Stability

Received Date: 24 June 2017
Revised Date: 23 July 2017
Accepted Date: 31 July 2017

Please cite this article as: Wang G, Jiang M, Zhang Q, Wang R, Zhou G, Biobased multiblock copolymers: Synthesis, properties and shape memory performance of poly(ethylene2,5-furandicarboxylate)-*b*-poly(ethylene glycol), *Polymer Degradation and Stability* (2017), doi: 10.1016/i.polymdegradstab.2017.07.032.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Biobased multiblock copolymers: Synthesis, properties and shape memory performance of

poly(ethylene2,5-furandicarboxylate)-b-poly(ethylene glycol)

Guoqiang Wang, Min Jiang, Qiang Zhang, Rui Wang, and Guangyuan Zhou*

Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese

Academy of Sciences, Changchun, Jilin, 130022, China

*Corresponding author: Guangyuan Zhou

E-mail: gyzhou@ciac.ac.cn

2,5-furandicarboxylate)-poly(ethylene **Abstract:** A series of multiblock copolymer poly(ethylene

glycol) (PEFEGs) synthesized from available biobased ethylene glycol(EG), were

2,5-furandicarboxylic acid (FDCA), and poly(ethylene glycol)(PEG) through a two-step melt

polycondensation method. The composition, molecular weight and its distribution, crystallization

behavior, thermal stability of PEFEGs were investigated by ¹H NMR, GPC, DSC, andTGA,

respectively. Effects of composition on crystallization behavior, thermal and mechanical properties of

PEFEGs were investigated. Furthermore, shape memory properties of PEFEGs were also investigated

systematically. GPC and ¹H NMR results show that the products were the multiblock copolymers, not

the blend of PEG and PEF. All PEFEGs exhibited the excellent thermal stability. With the increase of

PEG chain length and content, melt crystallization peak and melt peak of PEG block became higher

and the enthalpy values also became higher. Compared with PEF, the elongation at break of PEFEGs

are much better. Meanwhile, PEFEGs exhibit excellent shape memory properties.

Keywords:Poly(ethylene 2,5-furandicarboxylate), 2,5-furandicarboxylic acid, poly(ethylene

glycol), biobased polyester, shape memory

Introduction

Download English Version:

https://daneshyari.com/en/article/5200738

Download Persian Version:

https://daneshyari.com/article/5200738

<u>Daneshyari.com</u>