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a b s t r a c t

The fluid (continuum) approach is commonly used for simulation of plasma phenomena in
electrical discharges at moderate to high pressures (>10’s mTorr). The description com-
prises governing equations for charged and neutral species transport and energy equations
for electrons and the heavy species, coupled to equations for the electromagnetic fields.
The coupling of energy from the electrostatic field to the plasma species is modeled by
the Joule heating term which appears in the electron and heavy species (ion) energy equa-
tions. Proper numerical discretization of this term is necessary for accurate description of
discharge energetics; however, discretization of this term poses a special problem in the
case of unstructured meshes owing to the arbitrary orientation of the faces enclosing each
cell. We propose a method for the numerical discretization of the Joule heating term using
a cell-centered finite volume approach on unstructured meshes with closed convex cells.
The Joule heating term is computed by evaluating both the electric field and the species
flux at the cell center. The dot product of these two vector quantities is computed to obtain
the Joule heating source term. We compare two methods to evaluate the species flux at the
cell center. One is based on reconstructing the fluxes at the cell centers from the fluxes at
the face centers. The other recomputes the flux at the cell center using the common drift-
diffusion approximation. The reconstructed flux scheme is the most stable method and
yields reasonably accurate results on coarse meshes.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Fluid (continuum) models have been used since the 1960s to simulate plasma discharge phenomena. Fluid models de-
scribe the transport of electrons, ions and neutral species using moments of the species Boltzmann equation coupled to elec-
tromagnetic field equations. These models provide spatial and temporal information on averaged properties such as species
density and species temperature in discharges and the electromagnetic fields in the discharge. A wide variety of plasmas
such as low-pressure glow discharges [1–3], radio-frequency plasma discharges [4–6], dielectric barrier discharges [7],
microdischarges [8–11] and streamers [12] have been simulated using the fluid modeling framework.

A typical fluid model solves the following governing equations. The species continuity equation determines the individual
species number densities ðnkÞ in the discharge as follows
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where, k represents the species index, ~Ck is the species drift-diffusion flux, and _Gk is the gas-phase species generation rate
through plasma chemical reactions. The self-consistent electric potential is determined using the electrostatic Poisson’s
equation

r2/þ e
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k¼1

Zknk ¼ 0; ð2Þ

where, / is the potential, e is the unit electric charge, e0 is the permittivity of free space, Kg is the total number of gas species,
and Zk is the charge number of species k (e.g. �1 for electrons). Electron transport coefficients and the rate coefficients of
electron impact reactions are a strong function of the electron energy distribution function which may be parameterized
by a local electron temperature ðTeÞ [8–11]. In case the local fluid approximation is not used, fluid models include an electron
energy equation to determine the electron energy density ee ¼ 3

2 kBTene
� �

in the discharge

@ee

@t
þ ~r � 5~Ceee

3ne

 !
� ~r � ðge

~rTeÞ ¼ �e~E � ~Ce �
3
2

kBne
2me

mkb

ðTe � TgÞ�me;kb
� e

XIg

j¼1

DEe
j rj; ð3Þ

where, ge is the thermal conductivity of electrons, kB is the Boltzmann’s constant, me and mkb
are the particle mass of electron

and dominant background gas species, respectively, �me;kb
is the electron momentum transfer collision frequency with the

background gas, DEe
j is the energy lost per electron (in eV units) in an inelastic collision event represented by a gas-phase

reaction j; rj is the rate of progress of a reaction j (in m�3 s�1 units), and Ig is the total number of gas-phase reactions. The
electrostatic field is determined from the electrostatic potential as~E ¼ �~r/. Finally, the gas temperature ðTgÞ can be deter-
mined through the gas energy equation
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where, hk;sens is the sensible enthalpy of species k;gk is the thermal conductivity of species k;DEg
j is the energy lost from the

thermal pool in an inelastic collision event represented by a gas reaction j, and the index h indicates the summation over all
the heavy species. The above gas energy equation uses the constant pressure assumption and neglects fluid mechanical vis-
cous dissipation.

The Joule heating source term, i.e. the first term on the RHS of (3) and (4), constitutes the main source term in the electron
energy balance and often times for the gas energy equation. Since reaction rates due to electron impact are exponential func-
tions of the electron temperature, small deviations in the electron energy density can result in significant changes in the pre-
dicted discharge characteristics. Most reaction rates also depend on the number density of the background gas, and therefore
on the gas temperature. The accuracy of the method used to compute the Joule heating term in the energy balance equations
is therefore critical. As shown in [13], the stability of the numerical scheme also depends on the technique used to compute
the source term of the electron energy equation owing to temporal stiffness introduced by this term for several types of plas-
ma discharge problems.

Complex two-dimensional or three-dimensional geometries are now commonly encountered in the modeling of plasma
discharges. Local mesh refinement is often needed to capture the steep gradients in the number density and in the electric
field profiles. To optimize mesh resolution, adaptive mesh techniques can be pursued [12]. For these reasons, the use of
unstructured meshes is necessary, as it already is the case for computational fluid dynamics. Robust and accurate numerical
methods to simulate gas discharges on unstructured meshes must therefore be developed. Several issues specific to the self-
consistent simulations of plasma phenomena using a cell-centered finite-volume approach arise in the context of unstruc-
tured meshes, the treatment of the Joule heating term being one. Here we discuss a simple and accurate approach for the
numerical treatment of this term in the context of a cell-centered finite-volume discretization of the plasma discharge gov-
erning equations on generalized unstructured meshes. The technique can be used on structured meshes as well, where it
reduces to a simplified numerical stencil.

2. Numerical method

The governing equations (1)–(4) can be cast in an integral form, by integrating over an arbitrary control volume V asZ
v
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where, a is the dependent variable (the species number densities nk, the electrostatic potential /, the electron energy den-
sities ee, or the gas temperature Tg), ~Ca are the fluxes, and Sa are the source terms. In the cell-centered finite-volume scheme
for a fixed non-moving mesh, the following spatial discretization is used to approximate (5)
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