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a b s t r a c t

A Continuous Sensitivity Equation (CSE) method is presented for shape parameters in tur-
bulent wall-bounded flows modeled with the standard k–� turbulence model with wall
functions. Differentiation of boundary conditions and their complex dependencies on
shape parameters, including the two-velocity scale wall functions, is presented in details
along with the appropriate methodology required for the CSE method. To ensure accuracy,
grid convergence and to reduce computational time, an adaptive finite-element method
driven by asymptotically exact error estimations is used. The adaptive process is controlled
by error estimates on both flow and sensitivity solutions. Firstly, the proposed approach is
applied on a problem with a closed-form solution, derived using the Method of the Man-
ufactured Solution to perform Code Verification. Results from adaptive grid refinement
studies show Verification of flow and sensitivity solvers, error estimators and the adaptive
strategy. Secondly, we consider turbulent flows around a square cross-section cylinder in
proximity of a solid wall. We examine the quality of the numerical solutions by performing
Solution Verification and Validation. Then, Sensitivity Analysis of these turbulent flows is
performed to investigate the ability of the method to deal with non-trivial geometrical
changes. Sensitivity information is used to estimate uncertainties in the flow solution
caused by uncertainties in the shape parameter and to perform fast evaluation of flows
on nearby configurations.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Sensitivity Analysis (SA) has been the topic of active research for many years because of its numerous industrial applica-
tions. In design optimization, it refers to the gradient of the cost functions with respect to design variables which can be effi-
ciently obtained through adjoint methods. In a more general framework, sensitivities are the derivatives of the dependent
variables with respect to any (physical or numerical) parameter. They are more general in the sense that the derivatives
of cost functions can be deduced from the sensitivities of dependent variables; the reciprocal being false. We refer to them
as flow sensitivities. The body of work on SA has shown that it provides improved insights into the physic of complex prob-
lems and allows for a better understanding of them.

Irrespective of the approach employed, computing sensitivities is more involved for parameters that influence the prob-
lem through the modification of its geometry. They are referred to as shape parameters as opposed to value parameters. In-
deed, a number of difficulties arises when considering shape parameters both from the theoretical and the practical side that
will be discussed in what follows.
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There are several approaches for computing sensitivities: (1) Finite Differences (FD); (2) Complex Variable Method
(CVM); and (3) Sensitivity Equation Methods (SEM). The first option requires only evaluations of dependent variables and
computes their derivatives by finite differences. This simple approach requires minimal additional development. However,
it is costly because the problem at hand must be solved at least as many times as there are parameters. Furthermore, numer-
ical evaluations of sensitivities of pointwise quantities is often difficult because of technical problems arising from non-
matching meshes. However, the main disadvantage of this approach is that the calculation of derivatives may suffer from
subtractive cancellation errors leading to large errors in the evaluations if the parameter perturbations are too small. This
approach is often used as a verification tool for the other methodologies (see e.g. [1–3]).

The CVM is similar to the FD idea with the exception that a complex perturbation is taken. The key improvement is that
computed derivatives are not affected by round-off errors [4]. However, the CVM does not offer a saving of resources when
compared to using FD [5] since the problem must be solved at a perturbed state for each parameter. Furthermore, the re-
quired memory for the solver essentially doubles due to the use of complex declarations of floating point variables (the
CPU time of the original solver is also increased by a significant factor).

The last option is provided by the SEM which corresponds to numerically solving a set of equations for the sensitivities.
These equations are obtained by differentiation of the (discrete or continuous) equations for the dependent variables. Since
they are always linear, the SEM always compute a sensitivity for a fraction of the cost of computing the flow making these
methodologies very attractive. In the Continuous Sensitivity Equation (CSE) approach, the governing equations are first dif-
ferentiated and then discretized, whereas in the Discrete Sensitivity Equation (DSE) approach, discretization is performed
prior to differentiation. The advantages of each methodology and their differences have been extensively discussed in the
literature (see e.g. [6,7]). One of the main advantages of the DSE approach is that it can be handled through Automatic Dif-
ferentiation (AD). It is a powerful approach because the code for calculating sensitivities is almost automatically generated
from the code for computing dependent variables. Yet, in many cases, implementation requires user interventions to ensure
efficiency of the resulting sensitivity code both in terms of accuracy and CPU time. See [8–10] for more details on AD and on
the most common softwares. One of the main advantage of the CSE method is that it avoids the differentiation of non-dif-
ferentiable terms arising from discretization schemes such as limiters, blending functions or stabilization terms (since dif-
ferentiation is performed on the continuous flow equations). Furthermore, the continuous approach offers more flexibility at
the discretization stage. Here, we present a CSE approach.

When a shape parameter a is considered, independent variables (say x) depend on a. Dependent variables (say u) always
depend both on x and a : uðx; aÞ. Hence, for a shape parameter, one can consider either the Eulerian sensitivity @u=@a (partial
derivative of u with respect to a) or the Lagrangian sensitivity Du=Da (total derivative of u with respect to a). The major dif-
ficulty in using Lagrangian sensitivities is the requirement to define and manage the domain deformation induced by the
boundary displacement when the parameter changes (the definition being non-unique). Eulerian sensitivities avoid this del-
icate issue but special attention must be paid when deriving and evaluating boundary conditions. It is worth noting that the
DSE methods presented in the literature all use Lagrangian sensitivities which lead to the need for evaluating mesh sensi-
tivities. This requires the delicate issue of differentiating the mesh generation code or mesh deformation procedure which
is both involved and computationally demanding. To circumvent these difficulties, we propose the use of the Eulerian sen-
sitivities and present a suitable methodology for handling boundary conditions for the corresponding Sensitivity Equations
in turbulent flow problems. Moreover, this approach simplifies the use of adaptive grid methods which have proved to be
extremely powerful for achieving mesh independent solutions of complex problems [11,12].

In Computational Fluid Mechanics (CFD), there is a wealth of publication on SEM for laminar flows (see e.g. Refs. [13,6,14–
18,3]). However, the situation is quite different for the case of turbulent flows for which there is a paucity of literature. The
additional equations for turbulence modeling greatly increase the level of complexity of the system of PDE and its discret-
ization. The DSE approach has been applied to turbulent flows and value parameters using AD in Refs. [19,20] and to shape
parameters using hand-differentiation in Refs. [21,22]. The CSE method for turbulent flows and value parameters is pre-
sented in Refs. [23–25]. To the authors’ knowledge, this work is the first attempt to derive a CSE method for turbulent flows
and shape parameters.

To this end, wall-bounded turbulent flows are modeled with the RANS equations and the standard k–� turbulence model
with wall functions using two velocity scales. The CSE are obtained by direct differentiation of this set of PDE and their asso-
ciated boundary conditions. There are two major challenges when treating shape parameters. The first difficulty arises from
the differentiation of wall functions which is not straightforward due to their complex shape parameter dependencies. For
example, the boundary condition for the flow in the tangential direction is prescribed as a function of the tangential velocity
(mixed or Robin boundary condition). Secondly, it leads to a difficult requirement: the accurate evaluation of the first and
second-order derivatives of the velocity at the boundary. Duvigneau and Pelletier [26] have recently proposed a constrained
Taylor-series least-squares procedure to achieve accurate boundary gradients for laminar flows. For this work, we extend the
constrained Taylor-series least-squares procedure to wall-bounded turbulent flows (see Section 5.4).

The accurate evaluation of flow and shape sensitivity solutions of wall bounded turbulent problems is a tedious task. In-
deed, the flow exhibits features whose strength and location are difficult to capture. They are also hard to predict a priori so
that a good mesh is difficult to design ab initio. This difficulty is compounded when sensitivity variables are added because
their features are less intuitive than that of the flow variables. Furthermore, the transpiration terms in their boundary con-
ditions result in very thin regions where sensitivity variables exhibit sharp variations. And, when considering several design
parameters, each sensitivity has its own region of rapid variations. Hence, their successful computation requires appropriate
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