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a b s t r a c t

The convergence rate of a new direct simulation Monte Carlo (DSMC) method, termed
‘‘sophisticated DSMC”, is investigated for one-dimensional Fourier flow. An argon-like
hard-sphere gas at 273.15 K and 266.644 Pa is confined between two parallel, fully accom-
modating walls 1 mm apart that have unequal temperatures. The simulations are per-
formed using a one-dimensional implementation of the sophisticated DSMC algorithm.
In harmony with previous work, the primary convergence metric studied is the ratio of
the DSMC-calculated thermal conductivity to its corresponding infinite-approximation
Chapman–Enskog theoretical value. As discretization errors are reduced, the sophisticated
DSMC algorithm is shown to approach the theoretical values to high precision. The conver-
gence behavior of sophisticated DSMC is compared to that of original DSMC. The conver-
gence of the new algorithm in a three-dimensional implementation is also characterized.
Implementations using transient adaptive sub-cells and virtual sub-cells are compared.
The new algorithm is shown to significantly reduce the computational resources required
for a DSMC simulation to achieve a particular level of accuracy, thus improving the effi-
ciency of the method by a factor of 2.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

The direct simulation Monte Carlo (DSMC) method of Bird [1] is the most general and widely used method for simulating
non-continuum gas dynamics. DSMC simulations have been shown to yield solutions to the Boltzmann equation in the limit
of vanishing discretization error [2–4], and departures of DSMC simulations from such solutions have been shown to obey
Green-Kubo theory for small but finite discretization errors [5–7]. As a result, DSMC is often used as the standard by which
other methods for simulating non-continuum gas dynamics are assessed.

The generality and the accuracy of the DSMC method have allowed its application to areas outside the regime of hyper-
sonic aerodynamics, such as material processing and micro- and nano-technology. These new areas have placed new de-
mands on the method since the signal-to-noise ratio for subsonic flows is less favorable than for hypersonic flows.
Consequently, a clear understanding of how to achieve a specified level of numerical accuracy with a minimum of compu-
tational effort is needed.

In response to this need, convergence studies of the DSMC method have been conducted [5–8]. These studies cover a
wide range of flows, with the focus on one-dimensional Fourier and Couette flows, both steady and unsteady. The key con-
vergence metric is the ratio of the DSMC-calculated bulk transport properties (thermal conductivity and viscosity) to their
Chapman–Enskog (CE) theoretical values [3] although other functionals, such as heat flux and temperature have also been
discussed [8].
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Four parameters are known to limit the numerical accuracy of the DSMC method: the number of independent samples
per cell Sc , which is related to the statistical error of the method, and the number of simulators (computational molecules)
per cell Nc , the time step Dt, and the cell size Dx, which are related to the discretization error of the method [6–8]. Bird ob-
serves that statistical fluctuations decrease with the inverse square root of the sample size and can be reduced (in principle)
to any desired level by continuing the simulation or by repeating it with different initial random seeds [1]. Several authors
[9,10] offer closed-form expressions that relate statistical error in DSMC simulations to the square root of the sample size.

Bird recently proposed a new variant of DSMC, termed ‘‘sophisticated DSMC” [11–13]. This new DSMC algorithm aims at
improving the computational efficiency of DSMC without losing the accuracy of the original algorithm by reducing the dis-
cretization error of the algorithm for a particular selection of simulation parameters. To achieve this, significant modifica-
tions to the ways that simulators move and collide are introduced. More efficient grids and adaptive time steps that vary
across the domain are used to gain computational efficiency during the move phase. In the collision phase, the new algo-
rithm abandons the random selection of collision partners within a cell in favor of a nearest-neighbor selection scheme.
All these modifications optimize critical simulation parameters at a relatively low cost, leading to a more efficient DSMC
algorithm.

The new method retains many of the features of the original method and all of the physical models. However, the depen-
dence on discretization parameters and therefore the convergence characteristics of the new and original algorithms differ,
so a reevaluation of the convergence behavior is therefore necessary.

In this paper, the ability of the new DSMC algorithm to deliver improved computational efficiency is examined. In har-
mony with previous work [8], the benchmark case used for this purpose is one-dimensional heat transfer in a gas between
two parallel walls at unequal temperatures. The main convergence metric used is the ratio of the DSMC-calculated thermal
conductivity to its corresponding infinite-approximation CE theoretical value [3]. To ensure that the CE limit is achieved,
DSMC simulations are performed at small system and local Knudsen numbers (�0.02). Under these conditions, the normal
solution in the central region of the domain can be clearly differentiated from the Knudsen layers near the walls; it is within
this central (near-continuum) region that the convergence behaviors of the functionals are investigated.

More than 700 simulations covering the regime from near-equilibrium to non-equilibrium conditions are performed. The
results of the new DSMC method are compared with those of the original method for the same problem. From these results,
the difference in the performance of the two algorithms is estimated. The present calculations employ sufficient samples to
reduce statistical errors to levels that are negligible compared to the errors associated with the other three parameters. The
remaining non-statistical error (hereafter referred to as the discretization error) is systematically investigated for the Fourier
problem over wide ranges of the discretization parameters Dx, Dt, and Nc . Herein, DSMC07 and DSMC94 (i.e., as published in
Bird’s 1994 monograph [1]) are used to distinguish the new and original DSMC algorithms.

2. DSMC07: A new DSMC algorithm

The sophisticated DSMC07 algorithm retains the basic elements of the original DSMC94 algorithm described in Bird’s
monograph [1]. The key computational assumptions of DSMC, the uncoupling of molecular motion and collisions over a com-
putational time step (usually a fraction of the mean collision time (MCT) or the mean transit time (MTT)) and the partitioning
of the physical domain into cells (usually a fraction of the local mean free path), are maintained. The major modifications to
the algorithm involve changing how simulators are selected for collisions and how collisions are distributed over the dura-
tion of a time step. Besides the global time that a DSMC algorithm keeps track of, simulator-based and cell-based times are
calculated and kept track of as well. To achieve this, the DSMC07 global time is advanced in small global time steps that are
typically a small fraction of the time step used by the DSMC94 algorithm. Unlike the DSMC94 algorithm, only a small fraction
of the simulators move and collide at any global time step.

2.1. Collision partner selection procedures

In DSMC, the computational grid serves two purposes. The first one is the spatial discretization of sampled properties,
such as the collision frequency and moments of the molecular velocity distribution (e.g., density, momentum, energy).
The second one is to facilitate selection of collision partners that satisfy the basic requirement of geometrical proximity.
In principle, computational cells are not necessary for the selection of collision partners. Simulators occupy positions in
physical three-dimensional space, and, when collisions between them occur, each simulator could assess its neighboring
simulators to identify possible collision partners. Computationally, such a scheme would be feasible only for one-dimen-
sional flows where simulators could be easily sorted using their x-distance. In two- and three-dimensional flows, sorting
simulators according to their distances is more complicated, so cells are used to limit the number of possible collision part-
ners while at the same time ensuring geometrical proximity.

This basic principle is what DSMC07 aims to exploit by replacing the random selection of collision partners with a deter-
ministic nearest-neighbor selection scheme, resulting in a smaller mean collision separation (MCS) between colliding sim-
ulators [11,12]. The nearest-neighbor selection is limited to the simulators within each cell.

The idea of performing an OðN2Þ operation to sort all N simulators in a cell was initially demonstrated by LeBeau et al. [14]
and is termed the virtual sub-cell (VSC) scheme. The VSC scheme actually provides an efficient way of performing collisions
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