Accepted Manuscript

Flame retarding performance of elastomeric nanocomposites: A review

Prashant S. Khobragade, D.P. Hansora, Jitendra B. Naik, Aniruddha Chatterjee

PII: S0141-3910(16)30170-7

DOI: 10.1016/j.polymdegradstab.2016.06.001

Reference: PDST 7978

To appear in: Polymer Degradation and Stability

Received Date: 18 January 2016

Revised Date: 30 May 2016 Accepted Date: 5 June 2016

Please cite this article as: Khobragade PS, Hansora DP, Naik JB, Chatterjee A, Flame retarding performance of elastomeric nanocomposites: A review, *Polymer Degradation and Stability* (2016), doi: 10.1016/j.polymdegradstab.2016.06.001.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Flame Retarding Performance of Elastomeric Nanocomposites: A Review

\$Prashant S. Khobragade^a, \$D.P. Hansora^a, Jitendra B. Naik^a, Aniruddha Chatterjee a,†,*

^aUniversity Institute of Chemical Technology, North Maharashtra University,

Jalgaon, Maharashtra, India

†Present Address: Maharashtra Institute of Technology, Aurangabad, Maharashtra, India

ABSTRACT

This article presents a comprehensive review about previous research done for the development of

elastomeric nanocomposites (NCs) based flame retardant (FR) materials. Conservatively, a single fire

retardant element can achieve fire retardancy, but we report about combinations of elastomers and

various fire retardant materials at nanoscale, including layered materials and inorganic materials for the

development of polymeric and elastomeric NC based FR materials. We have critically reviewed and

summarized the surface morphological structure, organic treatment for surface modification, dispersion

phenomenon, fire retardant action and the flame-retarding properties of various elastomeric NCs. We

also highlight the fundamentals and combustion mechanism of fire retardancy tests, which have been

used to describe fire behavior, nature and modes of FR materials and their synergistic effects. We have

focused particularly on elastomeric NCs filled with specific, finely dispersed different nanofillers, which

will undoubtedly pave the way for development of FR materials showing physico-mechanical and

enhanced FR performance. This review article will objectively explore and give new direction for the

development of the "FR materials" which would be more accessible to the emerging field of materials

science.

KEYWORDS: Fire Retardancy, Flame Retardant, Nanomaterials, Elastomer, Nanocomposites

*CORRESPONDING EMAIL: aniruddha_chatterjee2006@yahoo.co.in;

aniruddha.chatterjee@mit.asia

The authors (D.P. Hansora and P. Khobragade) have contributed equally as first author in this

manuscript.

Download English Version:

https://daneshyari.com/en/article/5201079

Download Persian Version:

https://daneshyari.com/article/5201079

<u>Daneshyari.com</u>