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a b s t r a c t

The local RBF is becoming increasingly popular as an alternative to the global version that
suffers from ill-conditioning. In this paper, we study analytically the convergence behavior
of the local RBF method as a function of the number of nodes employed in the scheme, the
nodal distance, and the shape parameter. We derive exact formulas for the first and second
derivatives in one dimension, and for the Laplacian in two dimensions. Using these formu-
las we compute Taylor expansions for the error. From this analysis, we find that there is an
optimal value of the shape parameter for which the error is minimum. This optimal param-
eter is independent of the nodal distance. Our theoretical results are corroborated by
numerical experiments.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Radial basis functions (RBF) originate as a very efficient technique for interpolation of multidimensional scattered data
(see [8] and references therein). Later, it became popular as a truly mesh-free method for the solution of partial differential
equations (PDEs) on irregular domains. This application of RBFs was first proposed by Kansa [14,15] and it is based on enforc-
ing collocation of the PDE in a set of scattered nodes, to compute a global solution in the space spanned by a set of identical
RBFs translated to a set of RBF centers. The main advantages of the method are ease of programming and potential spectral
accuracy, but its main drawback is ill-conditioning of the resulting linear system. To overcome this drawback a local version
of the method was later proposed by several authors [3,24,26] simultaneously. The idea of the local RBF method, is to sac-
rifice the spectral accuracy inherent to the global method, in order to have a sparse better-conditioned linear system capable
of solving large multidimensional PDEs. Another advantage of the local version of the method is its suitability for problems
with discontinuous boundary conditions [1,5].

The local RBF method can also be considered as a generalization of the classical finite difference (FD) method to scattered
node layouts. In classical finite differences, derivatives of a function u at a given point are approximated as linear combina-
tions of the values of u at some surrounding nodes. In 1-D, for example, the kth-derivative at node xj is approximated by

dku

dxk

�����
x¼xj

�
XN

i¼1

wðkÞj;i uðxiÞ j ¼ 1; . . . ;N;

where xi is a set of surrounding nodes which usually are equispaced. The unknown weights wðkÞj;i are usually computed using
polynomial interpolation [9]. These 1-D formulas can be combined to create FD formulas for partial derivatives in two or
more dimensions, provided that the nodes in the stencil are located on some kind of structured grid, which severely limits
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the geometric flexibility of the method. In the case of RBF finite difference formulas (RBF-FD) this restriction is eliminated
since the weights are obtained by RBF interpolation on the set of surrounding nodes.

Once the weights for the derivatives appearing in the PDE have been determined for each scattered node, the differential
operator is enforced at each of those nodes. This procedure leads to a sparse, linear system of equations whose solution
yields the approximate values of u at the nodes. This local RBF method has been successfully applied to solve a variety of
problems [1,4,5,18,22,24,25].

However, papers addressing the convergence properties of the method are more scarce. It is well known that the local
method lacks the spectral accuracy of the global RBF method, but the exact dependence of the error with average distance
between nodes h, shape parameter c, and number of supporting nodes N, is not known. We mention, though, that Ding et al.
[6] carried out numerical experiments using Poisson’s equation on an equispaced grid to experimentally determine these
dependencies. They found an error estimate � � O((h/c)n) in which n is a constant dependent on the number of nodes N used
in the formulas (n � 1.9 for 6 6 N 6 9, n � 3.6 for 9 < N 6 27, n � 4.9 for 27 < N 6 34).

Fornberg and coworkers [7,10] analyzed the behavior of RBF interpolants in the limit of increasingly flat radial functions
(c ?1). They found that in the 1-D case, with very simple requirements on the basis functions, the interpolants converge to
the Lagrange interpolating polynomial and, therefore, in this limit RBF-FD differentiation is equivalent to the standard finite
difference method. Wright and Fornberg [27] used Hermite RBF interpolation method to derive new finite difference formu-
las (RBF-HFD) which also include a linear combination of derivatives at some surrounding nodes. They used cardinal RBF
interpolants to derive RBF-FD and HFD formulas in some simple cases and studied their behavior in the limit of flat basis
functions. They also analyzed numerically the dependence of the error on the shape parameter by using them to solve some
simple elliptic PDE problems.

In this work we address the convergence properties of RBF-FD formulas on equispaced and non-equispaced grids and ana-
lyze the dependence of the error with nodal distance h, shape parameter c, and number of supporting nodes N. The main
result of our study is to analytically show the existence of an optimal value of the shape parameter that minimizes the trun-
cation error. The optimal value is independent of the nodal distance and only depends on the value of the function and its
derivatives.

The paper is organized as follows: In Section 2 we describe the RBF-FD formulas and how to determine the unknown
weighting coefficients. In Section 3 we use Taylor series expansion in the limit c� h to derive closed form expressions of
the weighting coefficients for first and second order derivatives. A series expansion in powers of h leads to closed form
expressions for the error as a function of h and c. In Section 4 we derive the corresponding expressions for the error of
RBF-FD formulas to approximate the Laplacian. The results of Sections 3 and 4 are used in Section 5 to derive the optimal
value of the shape parameter. Section 6 extends these results to the case of non-equispaced nodes. Finally, we summarize
the main results of this work in Section 7.

2. RBF-FD formulation

In this section we describe how the RBF-FD formulas are derived and how the weights can be exactly computed. Consider
a stencil consisting of N scattered nodes x1, . . . ,xN, and a differential operator L. For a given node, say x1, the objective is to
approximate Luðx1Þ as a linear combination of the values of u at the N scattered nodes, so that

Luðx1Þ �
XN

i¼1

aiuðxiÞ: ð1Þ

To determine the weighting coefficients ai, a set of base functions /i(x), i = 1, . . . ,N are required. In that base,

L/jðx1Þ ¼
XN

i¼1

ai/jðxiÞ; j ¼ 1;2; . . . ;N: ð2Þ

This is a system of N linear equations on N unknowns whose solution yields the unknown weighting coefficients ai. In the
following we will use multiquadrics as RBFs,

/iðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ kx� xik2

2

q
;

where c is the shape parameter. As c increases the multiquadrics becomes increasingly flat and this has an important effect in
the accuracy of the approximation. The general behavior is such that the larger the shape parameter c, the smaller the
approximation error. However, the multiquadric RBF approximation suffers from a trade-off principle [21], i.e. increasing
the shape parameter to improve the accuracy results in a more ill-conditioned matrix and, therefore, to a significant increase
of rounding errors.

3. One-dimensional RBF-FD Formulas

In this section we show how to derive the exact RBF-FD formulas for first and second derivatives. We compute the limit of
these formulas for c� h, and perform a Taylor expansion of the error in powers of h.
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