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a b s t r a c t

We consider the shape optimization of spectral functions of Dirichlet–Laplacian eigen-
values over the set of star-shaped, symmetric, bounded planar regions with smooth bound-
ary. The regions are represented using Fourier-cosine coefficients and the optimization
problem is solved numerically using a quasi-Newton method. The method is applied to
maximizing two particular nonsmooth spectral functions: the ratio of the nth to first eigen-
values and the ratio of the nth eigenvalue gap to first eigenvalue, both of which are gener-
alizations of the Payne–Pólya–Weinberger ratio. The optimal values and attaining regions
for n 6 13 are presented and interpreted as a study of the range of the Dirichlet–Laplacian
eigenvalues. For both spectral functions and each n, the optimal attaining region has mul-
tiplicity two nth eigenvalue.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Denote by D the set of star-shaped, symmetric, bounded planar regions with smooth boundary. The Dirichlet–Laplace
(D–L) eigenvalue problem for a region D 2 D seeks eigenvalues k 2 R and eigenfunctions u 2 C2ðDÞ \ C0ðDÞ, nontrivial, such
that

�Du ¼ ku; x 2 D ð1aÞ
l ¼ 0; x 2 @D ð1bÞ

There is a tremendous body of work studying the distribution of the D–L eigenvalues and the properties of D–L eigenfunc-
tions—see, for example, [1–5] and references within. Notably, there are a countable number of positive eigenvalues with no
finite accumulation point. These eigenvalues are invariant under isometry of the domain (rotation and translation) and sat-
isfy domain monotonicity (i.e. larger regions have smaller eigenvalues: D � D0 ) k0k 6 kk). Both of these facts are conse-
quences of the max–min principle, stated

kk ¼ max
fv jgk�1

j¼1

min
Zk�1

R
D jrv j2 dxR

D v2 dx
ð2Þ

where Zk�1 � v 2 H1
0ðXÞ n f0g : v ? fv jgk�1

j¼1

n o
. The ratio in Eq. (2) is called the Rayleigh quotient. Low-lying eigenvalues sat-

isfy numerous isoperimetric or universal inequalities, a few of which are discussed in Section 2. The distribution of D–L
eigenvalues for large n satisfies Weyl’s Law

knðDÞ � 4pnAðDÞ�1 þ oðnÞ ð3Þ
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where A(D) is the area of D 2 D [5,6,1]. Each eigenfunction is smooth (C1) on D and zero on a set of C1 curves referred to as
nodal lines with well-known properties. Closed form expressions for the eigenfunctions cannot generally be obtained unless
the domain can be transformed into a separable coordinate system. If the domain has symmetry, the eigenfunctions are
either even or odd with respect to the axis of symmetry, simplifying their computation. The D–L eigenvalue problem arises
in a number of physical, engineering, and mathematical contexts including the study of vibrating membranes, electromag-
netism, acoustic wave propagation, heat flow, the semi-classical approximation of quantum bound states, and number
theory.

We denote by Kn(D) the first n increasingly-ordered D–L eigenvalues of a domain D 2 D counting multiplicity and refer to
the mapping Kn : D ! Rn as the D–L eigenvalue operator. In this article, we study optimization problems of the form

max
D2D

F �KnðDÞ ð4Þ

where F : Rn ! R is invariant to permutation of its arguments, i.e. F(x) = F(p(x)) where p(x) is a reordering of the components
of x 2 Rn. For such F, the composition F �Kn is referred to as a spectral function [7, Section 5.2]. Eq. (4) is a constrained shape
optimization problem where the constraints are given by n D–L eigenvalue equations. We generally refer to problem (4) as
an eigensystem-constrained shape optimization problem.

One may interpret Eq. (4) as a method to study the range of the D–L eigenvalue operator. To this end, we consider two
particular nonsmooth functions for F(x), given by

RnðxÞ ¼
½x�n
½x�1

ð5Þ

GnðxÞ ¼
½x�n � ½x�n�1

½x�1
ð6Þ

where [x]p denotes the pth smallest component of x 2 Rn. The spectral function rn(D) � Rn �Kn(D) is the ratio of the nth to
first D–L eigenvalues of the domain D 2 D. The spectral function gn(D) � Gn �Kn(D) measures the gap between rn(D) and
rn�1(D). Both rn(D) and gn(D) are invariant to translation, rotation, and dilation of the region D 2 D, so no additional con-
straints need be imposed in Eq. (4).

Results and outline. Our findings can be summarized:

1. In Sections 3–5, a BFGS quasi-Newton method is developed to solve the general eigensystem-constrained optimization
problem in Eq. (4). In Section 3, we discuss the representation of the domain D 2 D by Fourier-cosine coefficients,
fbkg1k¼1 and a finite-dimensional approximation to D, denoted Dm. In Section 4, we compute the gradient of the objective
function with respect to the Fourier-cosine coefficients, bk. Then in Section 5, we discuss a numerical implementation of
the method.

2. In Sections 6 and 7, the method is applied to the objective functions in Eqs. (5) and (6) for n = 2, . . . ,13. The optimal values
are given in Table 2 and the achieving regions are plotted in Figs. 3 and 4. For all n considered, the domain D�n maximizing
either rn(D) or gn(D) has eigenvalues satisfying kn D�n

� �
¼ knþ1 D�n

� �
. The results for both objective functions extend and sup-

port earlier work on the Payne–Pólya–Weinberger inequality and an eigenvalue multiplicity conjecture by Ashbaugh and
Benguria [8].

2. Background and related work

Two well-written and extensive recent manuscripts on isoperimetric inequalities involving D–L eigenvalues can be found
in [3,4]. The oldest and best-known such inequality is the Rayleigh–Faber–Krahn inequality, originally conjectured by Lord
Rayleigh in 1894, stating that mink1(D) over the set of all membranes of fixed area is attained only by the disk.

The problems of maximizing rn(D) for n = 2,3,4 have been considered by many authors [3,4]. In 1955, Payne, Pólya, and
Weinberger (PPW) showed that r2(D) 6 3 for all smooth bounded domains and correctly conjectured that the optimal value
is attained by the disk [9]. This bound was studied numerically [10] and improved many times until finally being proved in
1992 by Ashbaugh and Benguria (AB) [11] and the corresponding inequality now bears the PPW name. With this proof, AB
established that for the region D* (=disk) attaining the optimal value r�2 ¼max r2ðDÞ 	 2:539, we have k2(D*) = k3(D*). Sub-
sequently, the range of the first two D–L eigenvalues has been studied numerically [12] and analytically (see [4, Section 6.4]).
In 2003, after numerically searching through 65,000 trial and error regions, Levitin and Yagudin (LY) conjectured that
r�3 K 3:202 [13]. For the dumbell-shaped region D* with largest value r3, they found k3(D*) = k4(D*), supporting an earlier con-
jecture of AB [8]. In 1993, AB gave a bound for n = 4 stated r�4 6 ðr�2Þ

2 	 6:445 [14].
Recently, there has been much work on the value of rn for larger values of n. Cheng and Yang have shown that

rnþ1 6

ffiffiffiffiffiffi
41
p

3
n 	 2:134n ð7Þ

for n P 3 [15] and Harrell and Hermi have shown rnþ1 6
21
8 n ¼ 2:625n [16]. Taking n = 3, we have: r�4 K 6:402, a slight

improvement over the bound given by AB. From Weyl’s Law (3) and the Rayleigh–Faber–Krahn inequality, we expect that
asymptotically
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