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Particle methods are very convenient to compute transport equations in fluid mechanics
as their computational cost is linear and they are not limited by convection stability
conditions. To achieve large 3D computations the method must be coupled to efficient
algorithms for velocity computations, including a good treatment of non-homogeneities
and complex moving geometries. The Penalization method enables to consider moving
bodies interaction by adding a term in the conservation of momentum equation. This
work introduces a new computational algorithm to solve implicitly in the same step the
Penalization term and the Laplace operators, since explicit computations are limited by
stability issues, especially at low Reynolds number. This computational algorithm is based
on the Sherman–Morrison–Woodbury formula coupled to a GMRES iterative method to
reduce the computations to a sequence of Poisson problems: this allows to formulate a
penalized Poisson equation as a large perturbation of a standard Poisson, by means of
algebraic relations. A direct consequence is the possibility to use fast solvers based on Fast
Fourier Transforms for this problem with good efficiency from both the computational and
the memory consumption point of views, since these solvers are recursive and they do not
perform any matrix assembling. The resulting fluid mechanics computations are very fast
and they consume a small amount of memory, compared to a reference solver or a linear
system resolution. The present applications focus mainly on a coupling between transport
equation and 3D Stokes equations, for studying biological organisms motion in a highly
viscous flows with variable viscosity.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Particle methods have been widely studied in the last decades to compute transport equations in fluid mechanics. In
their Lagrangian form the associated convective terms are vanishing with the corresponding CFL stability condition [15,4,2],
so large time steps can be performed. Moreover Lagrangian methods are linearly scaling, robust and accurate [18,31]. These
features are particularly interesting for large 3D computations. Nevertheless, efficient numerical methods are required to
compute the related velocity field, in order to keep the Lagrangian treatment of the convection beneficial.
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Indeed, on the one hand, when considering vortex methods based on vorticity, Poisson equations are involved in the
velocity computation. Such Poisson equations can be solved using FFT-based or finite differences based solvers [14], or
kernel methods improved by multipole development techniques [12]. FFT-based solvers provide excellent efficiency even
for very large flows [6], particularly for unbounded or periodic domains with no obstacles [7]. Kernel methods (such as
Biot–Savard laws for the Poisson equation or Stokeslets for the Stokes equation) are usually less efficient, but they can
handle boundaries naturally using integral equations on surfaces [32], and are well fitted for infinite domain problems [30].
Their main drawback is that the expression of the kernel for variable flow parameters (such as viscosity) does not exist, and
therefore these methods cannot be applied.

On the other hand, whether a Poisson equation or another elliptic model is involved for the velocity computation, stan-
dard discretization methods, such as finite elements or finite volumes methods [17], are leading to large non-standard linear
systems [38], whose assembling and resolution become prohibitive for large 3D flows. Furthermore, these problems become
especially challenging when the fluid is interacting with immersed moving objects and when the fluid inner composition is
not homogeneous.

The Penalization method introduced by Angot et al. [3] is an interesting way to handle the fluid–structure interaction
by adding a term in the conservation of momentum equation. Moving obstacles are considered through their characteristic
function so a single mesh is used and no remeshing is needed. A splitting of Navier–Stokes equations enables to compute
separately the convection (with Lagrangian methods), the diffusion and the Penalization. For high Reynolds numbers diffu-
sion does not dominate so the associated stability condition does not restrict the method: computations can be explicit [23,
13]. When the Reynolds number becomes smaller, this CFL condition imposes smaller time steps and implicit computations
are required to keep using Lagrangian methods efficiency (with large time steps). It becomes critical when the Reynolds
number is so small that the flow is governed by quasi-static Stokes equations: both the Penalization and the diffusion have
to be computed together.

This article presents a novel approach to compute implicitly this Penalization term, which is crucial for the stability
and the convergence of algorithms. The present method is based on the Sherman–Morrison–Woodbury (SMW) formula (1),
which allows to compute the inverse of a perturbed matrix A + E T C E with respect to the original inverse matrix A−1, by
means of the following relation:(

A + E T C E
)−1 = A−1 − A−1 E T (

C−1 + E A−1 E T )−1
E A−1 (1)

One can refer for instance to [25] for a review of history, various uses and extensions of this formula.
In this equation A and C are square matrices of size n and p respectively while E is a p by n matrix. p is the rank of

the perturbation and is assumed to be smaller than n. This is an algebraic relation, which leads to two features: on the one
hand no approximation is made to get this formula (and consequently no error is added); on the other hand this allows
coefficients of C to be as large as needed, hence the method fits very well for Penalization coefficients which jump from
zero to 1/ε.

This new method aims at being cheap from a computational point of view so matrix assembling and linear system
resolution are avoided. The Penalization term is treated as a small rank perturbation and the SMW formula is exploited
coupled to a GMRES approach to get a numerical algorithm which involves only Poisson problems resolution. In this way fast
solvers based on Fast Fourier Transforms are used and the computational cost stays reasonable even for large 3D problems.
It is shown that the computational cost of the problem computed with this new numerical method is not depending on
the complexity of the geometry. This is a good alternative to Kernel methods such as Stokeslets (whose computational
time is directly linked to the number and size of obstacles) and linear system assembling (since the condition number
grows dramatically with the number of penalized points). This paper shows that this novel method enhanced computational
performances: less memory is consumed and computations are faster than using direct multigrid solvers or linear system
resolutions.

In Section 2, the Penalization method is presented for the Poisson equation. We present our novel methodology and
the computational benefits on this simple problem before introducing the method in the context of fluid mechanics equa-
tions. In Section 3, the numerical algorithm to solve the Stokes problem with variable viscosity in a complex geometry is
presented coupled to a Lagrangian method for transport equations. The chosen splitting makes appear exactly penalized
Poisson problem so the methodology developed in Section 2 is straightly applied. In Section 4, three numerical fluid me-
chanics illustrations, including applications to biomedical computing, are presented. Finally in Section 5 the computational
performances are discussed for these different fluid mechanics simulations.

2. Penalized problems and use of Sherman–Morrison–Woodbury (SMW) formula

2.1. Problem setup for penalized Poisson equation

The method is first presented for a Poisson problem and generalized in the following for fluid mechanics equations. Let u
be the solution to a penalized Poisson equation in a domain Ω , with homogeneous Dirichlet boundary conditions imposed
on ∂Ω:
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