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We propose the complex-plane generalization of a powerful algebraic sequence acceleration
algorithm, the method of weighted averages (MWA), to guarantee exponential-cum-algebraic
convergence of Fourier and Fourier–Hankel (F–H) integral transforms. This “complex-
plane” MWA, effected via a linear-path detour in the complex plane, results in rapid,
absolute convergence of field and potential solutions in multi-layered environments
regardless of the source-observer geometry and anisotropy/loss of the media present. In
this work, we first introduce a new integration path used to evaluate the field contribution
arising from the radiation spectra. Subsequently, we (1) exhibit the foundational relations
behind the complex-plane extension to a general Levin-type sequence convergence
accelerator, (2) specialize this analysis to one member of the Levin transform family
(the MWA), (3) address and circumvent restrictions, arising for two-dimensional integrals
associated with wave dynamics problems, through minimal complex-plane detour restric-
tions and a novel partition of the integration domain, (4) develop and compare two
formulations based on standard/real-axis MWA variants, and (5) present validation results
and convergence characteristics for one of these two formulations.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In many application areas concerning time-harmonic electromagnetic (EM) fields, one encounters environments con-
taining media of varying and arbitrary anisotropy1 whose inhomogeneity can be approximated as multi-layered in nature.
Examples include geophysical prospection [1–7], plasma physics [8], antenna design [9,10], optical field control [11], mi-
crowave remote sensing [12], ground-penetrating radar [13,14], and microwave circuits [15], among others. Such applications
regularly encounter integrals of the form2

f (r) ∼
+∞¨

−∞
f̃ (kx,ky)eikx(x−x′)+iky(y−y′)+ik̃z(z−z′) dkx dky (1.1)
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1 We assume each medium’s anisotropy manifests in diagonalizable constitutive material tensors to ensure completeness of the plane wave basis. Since
all naturally-occurring media possess diagonalizable material tensors, in practical applications this assumption is always true.

2 Appendix A summarizes the notation, terminology, and conventions used here.
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and/or

f (r) ∼
+∞ˆ

−∞
f̃ (kρ)H (1)

n
(
kρ

∣∣ρ − ρ ′∣∣)eik̃z(z−z′) dkρ (1.2)

which express space–domain field/potential functions as Fourier and Fourier–Hankel (F–H) integral transforms (resp.).
In many practical applications, these integrals must often be rapidly evaluated for a wide range of longitudinal and

transverse source-observer separation geometries r − r′ �= 0 (e.g., for potential or field profile reconstruction). However,
when using standard integration paths that run on or close to the real axis such as (1) the classic Sommerfeld integration
path (SIP) [16] and (2) paths detouring around the branch points, branch cuts, and poles followed by real-axis integration
[17–19], the convergence rate of these integrals is strongly dependent upon the transverse (rt − r′

t ) and longitudinal (z − z′)
separations. rt −r′

t determines the rapidity of the integrand’s oscillation due to the transverse phase Fourier or Hankel kernel
in (1.1) or (1.2) (resp.), with rising |ρ − ρ ′| leading to an integrand that traditionally requires increasingly finer sampling to
limit spatial aliasing and thus leads to undesirably long computation times. Furthermore, the longitudinal separation z − z′
governs the rate at which the evanescent spectrum’s field contribution decays with increasing transverse wave number
magnitudes,3 with rising |z − z′| effecting more rapid decay (and hence faster convergence) [20]. On the other hand, as
|z − z′| → 0 the convergence rate lessens, with the limiting case z − z′ = 0 yielding integrals of the form

f (r) ∼
+∞¨

−∞
f̃ (kx,ky)eikx(x−x′)+iky(y−y′) dkx dky (1.3)

and

f (r) ∼
+∞ˆ

−∞
f̃ (kρ)H (1)

n
(
kρ

∣∣ρ − ρ ′∣∣)dkρ (1.4)

that lead to divergent results when numerically evaluated, using these standard paths, without convergence acceleration.
See Fig. 1 for typical application scenarios wherein these standard paths either succeed or fail to deliver accurate field

results. Observing Fig. 1, one immediately realizes that devising an evaluation method for these integrals exhibiting robust-
ness with respect to all ranges of r − r′ �= 0 and medium classes (e.g., isotropic, uniaxial, biaxial) is highly desirable. This
robustness criterion inherently excludes fundamentally approximate methods such as image and asymptotic methods due to
their geometry-specific applicability and lack of rigorous error control [16,17,21–23]. As a result, to reliably ensure accurate
field results for arbitrary environmental medium composition and source-observer geometry combinations, we choose a
direct numerical integration method.

In this vein, one option involves pairing standard integration methods with (real-axis path based) algebraic convergence
acceleration techniques such as the standard MWA which, based on published numerical results, successfully imparts alge-
braic convergence acceleration even when |z − z′| = 0 [18,20]. However, it is desirable to (1) guarantee absolute, exponential
convergence in the classical (i.e., Riemann) sense for any r − r′ �= 0 separation geometry (in contrast to only guaranteeing
algebraic convergence in the Abel sense when |z − z′| = 0 [20]) and (2) endow error control to the evanescent-zone field
contribution associated with the tail integral, whose relative importance (compared to the radiation-zone contribution) to
the field solution grows as |r − r′| decreases, to ensure that both the radiation-zone and evanescent-zone contributions
are accurately evaluated.4 To this end, we propose a novel numerical integration method, representing a complex-plane
generalization of a specific member of the “scalar Levin-type sequence transform” (SLST) family [24] (i.e., the MWA), that:

1. bends the “extrapolation region”/tail [19] integration path sections to guarantee absolute, exponential convergence of
integrals like (1.1)–(1.4),

2. imparts added, robust algebraic convergence acceleration to the tail integrals, which compounds with the exponen-
tial convergence acceleration to effect absolute, exponential-cum-algebraic convergence, via use of a linear path bend
combined with our novel, complex-plane generalization of the MWA [18,20],

3. adjusts the detour bend angles to account for the presence of branch points, branch cuts, and poles (summarily referred
to here as “critical points”), and

4. addresses the added challenges associated with evaluating two-dimensional integral transforms arising as solutions to
the wave equation in planar-stratified environments lacking azimuthal symmetry.

3 I.e., |kx| and |ky | for Fourier double-integrals, or |kρ | for F–H integrals.
4 One cannot rely upon a-posteriori error checking, as was done in [18,20], for general environment and source-observer scenarios.
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