
Polymorphic nodal elements and their application
in discontinuous Galerkin methods

Gregor J. Gassner a,*, Frieder Lörcher a, Claus-Dieter Munz a, Jan S. Hesthaven b

a Institute for Aerodynamics and Gasdynamics, University of Stuttgart, Pfaffenwaldring 21, 70550 Stuttgart, Germany
b Division of Applied Mathematics, Brown University, Box F, Providence, RI 02912, USA

a r t i c l e i n f o

Article history:
Received 29 January 2008
Received in revised form 17 July 2008
Accepted 2 November 2008
Available online 25 November 2008

Keywords:
Discontinuous Galerkin
Nodal
Modal
Polynomial interpolation
hp Finite elements
Lebesgue constants
Quadrature free
Unstructured
Triangle
Quadrilateral
Polygonal
Tetrahedron
Hexahedron
Prism
Pentahedron
Pyramid

a b s t r a c t

In this work, we discuss two different but related aspects of the development of efficient
discontinuous Galerkin methods on hybrid element grids for the computational modeling
of gas dynamics in complex geometries or with adapted grids. In the first part, a recursive
construction of different nodal sets for hp finite elements is presented. They share the prop-
erty that the nodes along the sides of the two-dimensional elements and along the edges of
the three-dimensional elements are the Legendre–Gauss–Lobatto points. The different
nodal elements are evaluated by computing the Lebesgue constants of the corresponding
Vandermonde matrix. In the second part, these nodal elements are applied within the
modal discontinuous Galerkin framework. We still use a modal based formulation, but
introduce a nodal based integration technique to reduce computational cost in the spirit
of pseudospectral methods. We illustrate the performance of the scheme on several large
scale applications and discuss its use in a recently developed space-time expansion discon-
tinuous Galerkin scheme.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

While discontinuous Galerkin (DG) methods were first proposed in the early 1970s in [36] it was not until the more re-
cent development, initiated in the work of Cockburn and Shu [9,7,10–12], that these methods have matured into a powerful
computational tool for the solution of systems of conservation laws and the equations of gas dynamics [4,13]. The extension
to problems of viscous gas dynamics was initiated in [3,5] and this again has led to several related formulations [17,29,35]
for the compressible Navier–Stokes equations. Many examples and further details along these lines can be found in [8,26,30].

In spite of these significant advances over the last decade, discontinuous Galerkin methods still suffer from being too
expensive when compared to more traditional methods such as finite volume methods. This is particularly true for viscous
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problems, where the common solution approach is based on a mixed finite element formulation, which was introduced in [3]
and extended to higher order problems in [40,41]. In recent developments for the DG discretization of second order terms
[15,16,32], the introduction of auxiliary variables is circumvented by the use of two partial integrations, or by multiple partial
integrations for higher order operators [6].

Apart from this, however, a major computational cost is found in the traditional use of full order integration in the basic
implementation, leading to an excessive computational cost for nonlinear problems. Deriving inspiration from the classic
spectral methods [22] it is natural to consider the use of a nodal basis, leading to a formulation which in spirit shares much
with a spectral collocation formulation in which the boundary conditions are imposed weakly. Such methods, often known
as spectral penalty methods, have been developed for the compressible Navier–Stokes equations in [18–20] and extended to
non-tensorial elements in [21,23].

The main advantages of such a formulation are found in the exact reduction to the standard discontinuous Galerkin for-
mulation for linear problems, hence ensuring the accuracy for smooth problems, and the quadrature free approach for non-
linear problems, leading to a dramatic reduction in the computational cost. Furthermore, the use of a nodal basis with the
correct structure of the points along the edges and faces leads to a natural separation of the basis into boundary and internal
degrees of freedom. This becomes particularly beneficial for schemes using a high-order basis. Although the loss of exact
integration opens up for the possibility of instabilities driven by aliasing, this is a well known and well understood phenom-
enon within the community of spectral methods [22]. We shall return to this concern briefly later.

One of the limitations of past nodal based formulations and schemes is the reliance on either cubic or tetrahedral element
shapes. While these suffice in many cases, for problems with significant geometric flexibility one is tempted to also use more
general types of elements such as prisms and pyramids.

In this work, we explore how one constructs such general nodal elements, using a nodal recursive construction, and opti-
mize these for maximum accuracy by minimizing the Lebesgue constant of the associated multivariate Lagrange polynomial.
This is discussed in Section 2 and sets the stage for Section 3 where we discuss in detail the use of these elements in a dis-
continuous Galerkin scheme and return to the issues of aliasing and the potential for instabilities caused by this. We shall
also discuss how nodal elements can be used with advantage in an already existing scheme based on a modal expansion and
finally we use a recently developed explicit space-time discretization to arrive at the fully discrete explicit scheme. In Section
4 we demonstrate how this general scheme, employing polymorphic elements and local time-stepping, can be used with
benefit for both linear and nonlinear wave problems and, finally, the full three-dimensional compressible Navier–Stokes
equations. Most of the tests illustrate the potential for a four fold reduction in computational time without impacting the
accuracy by using the nodal based approach for large scale simulations. Section 5 concludes with a few general remarks
and outlook toward future work.

2. The nodal elements

We will first focus on defining different sets of high-order basis functions for a given grid cell Q � Rd. We introduce the
monomial basis fpigi¼1;...;N for the space of polynomials with degree less than or equal than p, where every basis function pi is
written as

pið~xÞ ¼ x
ai

1
1 � � � x

ai
d

d with 0 6 ai
1 þ � � � þ ai

d 6 p: ð1Þ

The dimension N of this space depends on the order p and on the spatial dimension d of the grid cell Q and is given by

N ¼ Nðp;dÞ ¼ ðpþ dÞ!
d!p!

: ð2Þ

Based on a monomial basis fpigi¼1;...;N expanded in the barycenter of the grid cell Q and its geometry the construction of an
orthonormal basis fuigi¼1;...;N using Gram–Schmidt orthogonalization is straight forward. This basis set is characterized by
the propertyZ

Q
uið~xÞujð~xÞd~x ¼ dij; ð3Þ

which holds for arbitrary grid cell shapes. With this modal basis we are now able to proceed to define a set of nodal basis
functions. Given a set of interpolation points f~njgj¼1;...;MI

� Q , we can construct the nodal Lagrange basis fwjgj¼1;...;MI
and

the nodal degrees of freedom ~u defined by the conditions

wjð~niÞ ¼ dij;

uð~xÞ :¼
XN

j¼1

ûjujð~xÞ¼
!
XMI

i¼1

~uiwið~xÞ:
ð4Þ

Combining these conditions yields the transformations

Vû ¼ ~u and VTw ¼ /; ð5Þ
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