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a b s t r a c t

We study the magnetohydrodynamics (MHD) equations with anisotropic ion pressure and
isotropic electron pressure under both the classical and semirelativistic approximations in
order to develop a numerical model. The dispersion relation as well as the characteristic
wave speeds are derived. In addition to the exact wave speed solutions, we also provide
efficient approximate formulas for the semirelativistic magnetosonic speeds. The equations
are discretized with the Rusanov and Harten-Lax-van Leer numerical schemes and imple-
mented into the BATS-R-US MHD code. We perform a set of verification tests.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

To describe real magnetized plasma, magnetohydrodynamics (MHD) has been widely used in many applications by both
the modeling and theoretical communities. There are various types of MHD approximations based on different assumptions
and simplifications, which can capture the physical processes of interest. Such processes include, but are not limited to, col-
lisions between particles, Hall current, electric current dissipation, heat conduction, as well as the pressure anisotropy. Pres-
sure anisotropy arises naturally in a low density magnetized plasma, where the gyration and the field-aligned motion of the
particles are not coupled by collisions. The magnetic field provides the preferred orientation, while particle collisions tend to
drive the plasma isotropic by evenly distributing the parallel and perpendicular momenta with respect to the magnetic field.
Without enough collisions, the parallel and perpendicular pressures can be different, however the difference is bounded by
instabilities including the firehose, mirror and proton–cyclotron instabilities [1–3]. Space plasmas, our primary interest, are
basically collisionless, which means that the pressure anisotropy could play an important role.

MHD with anisotropic pressure was first investigated by Chew et al. [4]. They started from the Boltzmann equation and
obtained the Chew–Goldberger–Low (CGL) approximation, also known as the double-adiabatic model, which is valid for sin-
gle-fluid collisionless plasma with strong magnetic field and neglects the pressure transport along magnetic field lines. Later
on Hau and Sonnerup [5] and Hau et al. [6]proposed the double-polytropic model as a more generalized description, which
recovers the CGL model as a limiting case. We derive our transport equations by taking the moments of the generalized ki-
netic equation presented by Gombosi and Rasmussen [7]. We include the electron pressure as well, which is assumed to be
isotropic. This assumption is valid in most space plasma applications, since electrons respond to perturbations much more
rapidly than ions due to their small mass, as a result their momentum distribution remains approximately isotropic.
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As an important extension to the classical (non-relativistic) case, we study the semirelativistic formulation. The semirel-
ativistic approximation assumes that the plasma flow speed and the sound speed are nonrelativistic, while the Alfvén speed
is relativistic. This is applicable for the case when the classical Alfvén speed is comparable or even larger than the speed of
light, for example in Jupiter’s and Saturn’s magnetospheres due to strong planetary magnetic fields. For problems with mod-
erate Alfvén speeds, the semirelativistic form of MHD equations is still useful because it can accelerate numerical conver-
gence to steady state solutions by artificially reducing the speed of light, which is known as the ‘‘Boris correction’’ in the
space plasma modeling community [8]. For single-fluid ideal MHD, the semirelativistic equation set as well as characteristic
waves were presented in [9].

This is the first time that a numerical model is built to solve the semirelativistic MHD equations with anisotropic ion pres-
sure and isotropic electron pressure. As a first step, we derive the dispersion relation and solve for the characteristic wave
speeds. The maximum wave propagation speed determines the maximum stable explicit time step according to the Courant–
Friedrichs–Lewy (CFL) stability condition. The maximum wave speed is also required for the Rusanov (or local Lax–Fried-
richs) scheme [10], while the fastest left and right wave speeds are needed for the Harten–Lax–van Leer (HLL) scheme
[11]. The anisotropic MHD equations are implemented into the BATS-R-US MHD code [12,13], which can solve various forms
of the MHD equations including Hall, semirelativistic, multi-species, multi-fluid and so on. The pressure anisotropy is the
latest capability of the BATS-R-US code.

The paper first presents the MHD equations for both classical and semirelativistic cases with anisotropic ion pressure and
isotropic electron pressure. In Section 3 the characteristic waves are explored for the semirelativistic approximation. The
classical case and the case without electron pressure are also obtained. Section 4 describes the numerical method. In Sec-
tion 5, we present verification tests using the BATS-R-US code. Section 6 contains our conclusions and plans for future work.

2. Equations

In the presence of anisotropic ion pressure and isotropic electron pressure, the pressure tensor can be written as [4,14]

P ¼ ðp? þ peÞIþ ðpk � p?Þbb ð1Þ

where I is the identity tensor and b = B/jBj is the unit vector along the magnetic field B. We define B = jBj as the magnitude of
the magnetic field for later use. The electron pressure is denoted by pe, while pk and p\ describe the parallel and perpendic-
ular ion pressure components with respect to the magnetic field. The average ion scalar pressure thus can be expressed as

p ¼
2p? þ pk

3
ð2Þ

which is the trace of the ion pressure tensor divided by 3.

2.1. Non-relativistic equations

We start with the equation set for non-relativistic MHD in the primitive-variable form

@q
@t
þ ðu � rÞqþ qðr � uÞ ¼ 0 ð3Þ

q
@u
@t
þ qðu � rÞuþrðp? þ peÞ þ r � ½ðpk � p?Þbb� þ 1

l0
B� ðr � BÞ ¼ 0 ð4Þ

@B
@t
þr� ½�ðu� BÞ� ¼ 0 ð5Þ

@pk
@t
þ ðu � rÞpk þ pkðr � uÞ þ 2pkb � ðb � rÞu ¼ 0 ð6Þ

@p?
@t
þ ðu � rÞp? þ 2p?ðr � uÞ � p?b � ðb � rÞu ¼ 0 ð7Þ

@pe

@t
þ ðu � rÞpe þ

5
3

peðr � uÞ ¼ 0 ð8Þ

where q and u represent the density and velocity, l0 is the permeability of vacuum, and the polytropic index is taken to be
5/3. Note that we assume that the ion and electron velocities are equal, thus we do not consider Hall MHD for this study.
Also, the collision terms which describe the interactions between ions and electrons as well as wave scatterings are all
neglected. Therefore, we are dealing with an ’ideal’ three-temperature MHD approximation, i.e., considering the ion parallel
pressure, ion perpendicular pressure and electron pressure seperately.

Compared to the isotropic MHD equations, the continuity Eq. (3) and the induction Eq. (5) remain the same. The momen-
tum Eq. (4) contains the pressure tensor (1) instead of the scalar pressure in the isotropic case. The ion pressure components
have their individual evolution Eqs. (6) and (7). In the absence of collision terms, the ratio between the two pressure com-
ponents might achieve unrealistic values. When implementing the equations into BATS-R-US, we add a relaxation term to
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