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The efficiency of exact simulation methods for the reaction–diffusion master equation
(RDME) is severely limited by the large number of diffusion events if the mesh is fine or if
diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo
simulation methods limit the efficiency of parallel implementations. Several approximate
and hybrid methods have appeared that enable more efficient simulation of the RDME.
A common feature to most of them is that they rely on splitting the system into its reaction
and diffusion parts and updating them sequentially over a discrete timestep. This use of
operator splitting enables more efficient simulation but it comes at the price of a temporal
discretization error that depends on the size of the timestep. So far, existing methods have
not attempted to estimate or control this error in a systematic manner. This makes the
solvers hard to use for practitioners since they must guess an appropriate timestep. It also
makes the solvers potentially less efficient than if the timesteps were adapted to control
the error. Here, we derive estimates of the local error and propose a strategy to adaptively
select the timestep when the RDME is simulated via a first order operator splitting.
While the strategy is general and applicable to a wide range of approximate and hybrid
methods, we exemplify it here by extending a previously published approximate method,
the diffusive finite-state projection (DFSP) method, to incorporate temporal adaptivity.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

To understand biological systems on the cellular level, it is often essential to account for the impact of noise due to small
molecule count. For example, it has been demonstrated that stochasticity can have a profound effect on gene regulatory
systems [23,8]. Spatial distribution of molecules in a cell can result in locally small populations of key chemical species,
such that noise drives essential behavior, as in the case of symmetry breaking across many eukaryotic cell types [30].
Spatial stochastic modeling has already begun to yield new insights in systems such as spatiotemporal oscillators [10,27,
26], MAPK signaling [28], self-organization of proteins into clusters [7] and polarization of proteins on the cell membrane
in yeast [1]. Several modeling frameworks are used to model spatial stochastic system, the two most commonly used in
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systems biology being continuous space Brownian Dynamics (BD) methods exemplified by GFRD [31] and the mesoscopic
reaction–diffusion master equation (RDME), the latter being the focus of this paper.

In the traditional RDME, space is subdivided into subvolumes that can individually be treated as well-mixed. Reactions
within a subvolume are expressed in the form of the chemical master equation (CME) [13] and realizations of the process
can be generated using Gillespie’s stochastic simulation algorithm (SSA) [12]. Molecules can move freely between neighbor-
ing voxels via diffusive jumps, which are modeled as linear jump events in a Markov process. Optimized exact simulation
methods such as the next subvolume method (NSM) [7] can be used to generate statistically correct realizations of the
RDME. As with all exact methods applied to RDME models, the NSM suffers from a potentially high computational cost
due to having to explicitly simulate each diffusion event. The number of diffusive transfers between voxels grows rapidly
as the mesh resolution is made finer, and as a result the majority of computation time tends to be spent on sampling
diffusion events. Additionally, these methods are also inherently serial, which has thwarted attempts to increase efficiency
via parallelization.

To speed up simulation of the RDME many methods rely on operator splitting. By splitting the operators, most often with
a Lie–Trotter scheme [29], the reaction and diffusion steps can be solved independently. While diffusion carries the bulk of
the computational burden in exact solvers, it is often possible to take advantage of the structure and linear nature of the
discretized diffusion equation to speed up this step in an operator-split solver. Examples of approximate methods that have
been proposed to speed up the simulation of the RDME by reducing the cost of the diffusive step include methods based
on tau-leaping [25,21], the multinomial simulation algorithm [19], spatially adaptive hybrid methods [11] and the diffusive
finite state projection method (DFSP) [6]. While splitting in itself does not resolve the issue of the inherent stiffness of
the diffusion operator, the continued introduction of methods for simulating the RDME via operator splitting highlights the
potential of this approach. Another recent use of operator splitting in the RDME context is the use of Lie–Trotter splitting
to simulate fractional diffusion [2]. Yet another advantage of splitting is that it converts a largely serial problem, which is
known to be difficult to parallelize in an efficient manner, into a naturally parallelizable one. For the existing approximate
and hybrid methods for the RDME, splitting the physics (reaction and diffusion) is necessary. For parallel implementations,
another possibility is to split the computational grid into blocks, as proposed by Arampatzis et al. [14], where the error
introduced by operator splitting at block boundaries was analyzed. Our analysis here is different since it applies to the case
of splitting the reaction and diffusion operators.

Splitting the operators introduces an error that depends on the size of the splitting time step, however previous al-
gorithms that rely on operator splitting have not attempted an a priori error estimator. Without such an estimator these
methods have no way to automatically control the splitting error. This limits their usefulness for practitioners. From an
efficiency point of view, not knowing and controlling the error might lead to the use of unnecessary small timesteps at
the price of slower simulations. In this work we seek to address theses issues by presenting estimators of the local error
in probability, mean and variance for a first order Lie–Trotter splitting of the RDME. The estimators allow control of the
splitting error for spatial stochastic simulation and enables any method based on operator splitting to be implemented
adaptively.

This paper is organized as follows: in Section 2 we introduce the RDME. In Section 3 we outline how to simulate the
RDME using operator splitting. We derive our estimator for the local error in the PDF, mean and variance, and demonstrate
the accuracy of the estimator for an example problem. Finally, in Section 4 we present how the local error estimates can be
used to extend an approximate method for the RDME to incorporate temporal adaptivity.

2. Spatial stochastic simulation using the RDME

Given a system with Ns chemical species Xs reacting in a physical domain Ω , discretize Ω into Nv non-overlapping
voxels Vi , with volume |Vi |, and let the state of the system be described by the (Nv × Ns) state matrix x, where the
element xis is the copy number of species Xs in voxel Vi . Let xi,· denote the i-th row of x and x·,s the s-th column. The
reaction network consists of Nr chemical reactions r = 1 . . . Nr . The (1 × Ns) stoichiometry vector nir describes the change
in the state, x̃i,· = xi,· + nir , when reaction r occurs in voxel i and the propensity function for that reaction is air(xi,·).

Diffusion of species Xs along the edge (2D) or face (3D) connecting voxels Vi and V j is modeled as a linear jump event,
or diffusive transfer,

Xis
di js−−→ X js, (1)

with propensity function μ(x) = dijsxis . The change in state due to the diffusive transfer is described by the (Nv × 1)

stoichiometry vector νi js , such that the new state is x̃·,s = x·,s + νi js . All entries of νi jk are zero except νi js(i) = −1 and
νi js( j) = 1. In the case of reactions only, the probability density function p(x, t) ≡ p(x, t|x0,0) obeys the master equation

d

dt
p(x, t) = Mp(x, t) ≡

Nv∑
i=1

Nr∑
r=1

air(xi· − nir)p(x1·, . . . ,xi· − nir, . . . ,xN·, t) −
Nv∑
i=1

Nr∑
r=1

air(xi·)p(x, t). (2)

For the case of one subvolume, Nv = 1, (2) reduces to the CME for a well stirred system. For a system with only diffusion,
the master equation takes the form
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