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a b s t r a c t

Smoothed particle dynamics refers to Smoothed Particle Hydrodynamics (SPH) when sim-
ulating macroscopic flows and to Smoothed Dissipative Particle Dynamics (SDPD) when
simulating mesoscopic flows. When the considered flow is highly dissipative, this other-
wise very attractive method faces a serious time-step limitation. This difficulty, known
in literature as Schmidt number problem for Dissipative Particle Dynamics (DPD), prevents
the application of SDPD for important cases of liquid micro-flows. In this paper we propose
a splitting scheme which allows to increase significantly the admissible time-step size for
SPH and SDPD. Macroscopic and mesoscopic validation cases, and numerical simulations of
polymer in shear flows suggest that this scheme is stable and accurate, and therefore effi-
cient simulations at Schmidt numbers of order O(106) are possible.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Smoothed particle dynamics is a fully Lagrangian, grid free method, where a smoothing kernel is introduced to approx-
imate functions and their spatial derivatives from data carried by neighboring particles. It is referred to as Smoothed Particle
Hydrodynamics (SPH) when simulating macroscopic flows [1], and as Smoothed Dissipative Particle Dynamics (SDPD) when
simulating mesoscopic flows [2,3]. SDPD also can be viewed as a modification of Dissipative Particle Dynamics (DPD), a pop-
ular mesoscopic particle-based method [4]. Compared to DPD, in SDPD transport coefficients can be prescribed as input
parameters rather than being an indirect result of other model parameters. Thermal fluctuations can be introduced adap-
tively according to the size of the fluid particles.

When the smoothed particle dynamics method is used to simulate low-Reynolds-number and mesoscopic liquid flows,
the time-step size limit for stable time integration is usually determined by the viscous effects as such flows are highly dis-
sipative. Specifically, this issue is referred to as Schmidt number problem in DPD [5,6] and obviously also applies to SDPD.
The Schmidt number is defined as the ratio of momentum diffusivity (viscosity) and mass diffusivity

Sc ¼ l
Dq

; ð1Þ

where l is dynamic viscosity, q is density and D is the diffusion coefficient. Typical Sc number achieved by SDPD and DPD
simulations are of order O(1), which is similar to that of a gas rather than a liquid with Sc �O(103).

Peters [7] suggested that the diffusion coefficient D appearing in the definition of Sc refers to the molecular diffusivity and
therefore is an ill-defined quantity for coarse-grained systems. Accordingly, one would not need to achieve realistically
large Sc to capture correct hydrodynamic interactions [8–10]. However, it has been pointed out by Groot and Warren
[11] that in order to achieve a realistic liquid behavior it is essential to recover the correct magnitude of Sc in DPD simulation.
Furthermore, it was observed by Symeonidis et al. [5,12] that an agreement between simulations and experiments with
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respect to the non-equilibrium properties of a DNA molecule in a shear flow requires Sc numbers with a magnitude of that
for a liquid.

For increasing Sc in DPD simulation one could generate a higher viscosity by increasing the stiffness of the conservative
force or the number density of DPD particles, or the dissipative force. Since the represented length scale decreases with the
increase of the former two quantities, these approaches contradict the intended coarse-graining property of the DPD method.
Therefore, a common approach for increasing Sc is to increase the magnitude of the dissipative force. However, if the DPD
particle velocity is updated explicitly, as in the traditional velocity-Verlet method [11], the time integration requires a very
small, computationally inefficient time-step size to achieve correct equilibrium properties. To cope with this difficulty,
Pagonabarraga et al. [13] have proposed an iterative method where the particle velocity is updated implicitly. However, it
is found that such a method is not very practical due to large computational cost. Lowe [14] developed an alternative
DPD method where the dissipative and random forces of the traditional DPD method are replaced by a pairwise momen-
tum-conservative Andersen thermostat, which relates the resulting viscosity to a prescribed random relaxation parameter.
Due to the Andersen thermostat the method recovers the correct kinetic temperature independently of the time-step size
and can be used for simulating a DPD fluid with high Sc. One issue of this method is that the deterministic dissipative term
in DPD is replaced by a stochastic term which may lead to strong spatial–temporal fluctuations of the dissipation rate when
the time-step size is large.

More recently, a splitting scheme for DPD was proposed by Shardlow [15]. While updating the contribution of the con-
servative force explicitly, similarly to that of Lowe’s method, this method updates the contributions of the dissipative and
random forces in pairwise fashion. By this procedure the original DPD formulation of dissipative and random forces is pre-
served. Nikunen et al. [16] showed that the accuracy and performance of Shardlow’s scheme is superior to that of several
other schemes commonly used in DPD. However, compared to that of Lowe’s method, the kinetic temperature is still signif-
icantly overestimated when a large time-step size is used. It is interesting to note that in an earlier work of Monaghan [17] a
splitting scheme similar to that of Shardlow [15] was described for handling the drag force on dust particles when modeling
dust-gas flow with an SPH method. To recover very large drag coefficients the pairwise interactions are computed by sweep-
ing over all the dust-gas particle pairs several times. Although this method originally has been developed for a drag-force
model an extension to general viscous flows appears to be straightforward.

In this work we present a splitting scheme for the smoothed particle dynamic method which can be viewed as a combi-
nation and extension of Shardlow’s and Monaghan’s schemes. The scheme achieves significantly larger time-step sizes than
is possible by the standard predictor–corrector and velocity-Verlet schemes, and can be applied for general macroscopic and
mesoscopic viscous flows. To demonstrate the robustness and efficiency of the method, a number of validation tests and
examples for macroscopic and microscopic flows are given.

2. SPH and SDPD

For SPH the temporal evolution of discrete-particle location and properties is given by

dri

dt
¼ vi; ð2aÞ
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representing a Lagrangian discretization of the Navier–Stokes equations for isothermal, weakly compressible flow [3]. Here,
eij and rij are the normalized vector and distance from particle i to particle j, respectively. ri,vi,mi,qi and pi are position, veloc-
ity, mass, density and pressure of a particle i, respectively. ri is the inverse of particle volume, and Wij = W(rij,h) is a kernel
function with smoothing length h. An isothermal equation of state is given as

p ¼ p0
q
q0

� �c

þ b; ð3Þ

where p0,q0, b and c are parameters which may be chosen based on a scale analysis so that the density variation is less than a
given value, usually 1% [18].

Within the SDPD formulation [2] Eq. (2) presents the deterministic part of the particle dynamics. Using the GENERIC for-
malism [19,20] thermal fluctuations can be taken into account by postulating the following expressions for mass and
momentum fluctuations

d ~mi ¼ 0; ð4aÞ

dePi ¼
X

j

BijdWijeij; ð4bÞ

where dWij is the traceless symmetric part of a tensor of independent increments of a Wiener process, and Bij is defined as
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