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This study presents the derivation of ordinary state-based peridynamic heat conduction
equation based on the Lagrangian formalism. The peridynamic heat conduction parameters
are related to those of the classical theory. An explicit time stepping scheme is adopted for
numerical solution of various benchmark problems with known solutions. It paves the way
for applying the peridynamic theory to other physical fields such as neutronic diffusion
and electrical potential distribution.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Nonlocal theories have been used to some extent to describe heat conduction on a continuum level. In heat conduc-
tion, the thermal energy is transported through phonons, lattice vibration, and electrons. Usually, electrons are the vehicles
through which thermal energy is transported in metals while phonons are the heat carriers in insulator and semiconductors.
This process of thermal energy transfer is inherently nonlocal because the carriers arrive at one point having brought ther-
mal energy from another. Nevertheless, macroscale heat transfer models that adopt a local formulation, typically employing
the Fourier law as the local constitutive relation, have been used successfully to represent continuum heat conduction.

The mean free path of the heat carriers is the average distance a carrier travels before its excess energy is lost. As the
heat carriers’ mean free path becomes comparable to the characteristic lengths; the nonlocality needs to be taken into
account in the continuum model. Nonlocality often becomes important at low temperatures, as exhibited in cryogenics
systems, since the heat carriers have a longer mean free path at lower temperatures. It has been found that nonlocality
should also be accounted for in problems in which the temperature gradients are steep. This is because the penetration
depth, the length characterizing the temperature gradient, becomes short, even becoming of the same order of magnitude
as the mean free path of the carrier. In such instances, it is necessary to consider the nonlocality of the heat transport in
a continuum model. Recently, with the miniaturization of devices, the small geometric length scales have also necessitated
the inclusion of nonlocal effects in microscale and nanoscale models [1].

Several nonlocal heat conduction theories have been proposed in the last few decades. In the early 1980s, Luciani et al.
[2] developed a nonlocal theory to better represent electron heat transport down a steep temperature gradient by intro-
ducing a nonlocal expression for the heat flux. The nonlocal model was in better agreement with probabilistic simulations
(Fokker–Planck simulations) than the local models. Later, Mahan and Claro [3] proposed a nonlocal relation between the heat
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current, determined from Boltzmann’s equation, and the temperature gradient. In the 1990s, Sobolev [4] introduced a model
in which both space and time nonlocality are taken into account in the strong form, i.e. integral form, of the energy balance,
Gibbs and entropy balance equations. Lebon and Grmela [5], proposed a weakly nonlocal model (weakly nonlocal models
are typically based on gradient formulation). The model was based on nonequilibrium thermodynamics, for which an extra
variable is added to the basic state variables to account for nonlocality. Subsequently, they extended their model to include
nonlinearity [6]. More recently, the development of nonlocal heat conduction equations has been motivated by the miniatur-
ization of devices. A number of researchers have put forth nonlocal models with the objective of capturing heat transport
in microscale and nanoscale devices. One example of this is the ballistic-diffusive heat equation by Chen [7], which was
derived from the Boltzmann equation, and it accounts for nonlocality in heat transport. Another example is by Alvarez and
Jou [8]. They developed their model by including nonlocal (and memory/lag) effects in irreversible thermodynamics. Tzou
and Guo [9] constructed their model by incorporating a nonlocal (and lag) term into the Fourier law.

An area of interest is determining the temperature field in the presence of emerging discontinuities. One class of prob-
lems that contains a discontinuity is the heat transfer process which involves phase change such as solidification and
melting [10]. This process is commonly referred to as the Stefan problem, and there are a number of technologically im-
portant problems that involve heat transfer with phase change. Examples of these include ablation of space vehicles during
reentry and casting of metals. Another heat conduction problem with an emerging discontinuity is the rewetting problem
from the nuclear industry. Rewetting in a nuclear reactor is employed to restore temperatures to a safe range following
accidental dry out or loss of coolant. Emergency cooling is introduced to the system via an upward moving water front or
by spraying from the top of the reactor [11,12]. A moving discontinuity occurs in the heat generating solid at the quench
front due to the sudden change in heat transfer condition at the solid surface.

Peridynamics is a nonlocal continuum theory which allows governing field equations to be applicable at discontinuities.
This applicability at discontinuities is achieved by replacing the spatial derivatives, which lose meaning at discontinuities,
with integrals that are valid regardless of the existence of a discontinuity. A peridynamic heat conduction model allows
problems with discontinuities are readily solvable as no spatial derivatives appear in the formulation, making the equation
applicable everywhere in the body.

The peridynamic theory was initially developed as a reformulation of the equation of motion in solid mechanics that
was better suited for modeling bodies with discontinuities, such as cracks [13]. The theory was formulated in what is now
referred as the bond-based peridynamic theory, in which a body assumed to be comprised of a network of independent
pairwise interactions. However, the independence of the pairwise interactions in solid mechanics leads to certain material
limitation. As a result, Silling et al. [14] and Silling and Lehoucq [15] developed a generalized approach to peridynamics in
which interactions are not independent, and referred to as state-based peridynamics. Peridynamic states were introduced
as the mathematical objects that convey the information associated with a body. Within the realm of solid mechanics, the
peridynamic theory has been successfully employed to model fracture nucleation and propagation [16].

A peridynamic approach to heat conduction is advantageous as it not only accounts for nonlocality but it also allows
for the determination of the temperature field in spite of discontinuities. The peridynamic heat conduction model is a
continuum model; it is not a discrete model. As such the phonon and electron motion is not explicitly modeled. Initial
successful attempts have recently been made to develop heat conduction equations in the peridynamic framework. Gerstle
et al. [17] developed a peridynamic model for electromigration that accounts for heat conduction in a one dimensional body.
Additionally, Bobaru and Duangpanya [18] proposed a one dimensional peridynamic heat conduction equation. Recently,
Bobaru and Duangpanya also solved the 2-D heat conduction problem with discontinuities [19]. Both studies adopted the
bond-based peridynamic approach.

As part of this study, the heat conduction equation is formulated within the framework of generalized state-based peri-
dynamics. To begin with the peridynamic states are reviewed. The derivation of the generalized peridynamic heat equation
is demonstrated using the Lagrangian formalism and the peridynamic variables are explained. Subsequently, simplifications
are made to develop the bond-based peridynamic approach for heat conduction from the generalized state-based. The ther-
mal response function and an approach for determining the microconductivity are also presented. A numerical procedure is
described for solving the peridynamic heat conduction equations along with the discretization and time stepping schemes
as well as numerical stability criterion. Various problems are simulated based upon the present peridynamic heat transfer
model, and comparisons against classical solutions are presented in order to establish its validity.

2. State-based peridynamic thermal diffusion equation

Within the peridynamic framework, the interaction between material points is nonlocal. For thermal diffusion, the non-
local interaction between material points is due to the exchange of heat energy. Therefore, a material point will exchange
heat with points within its neighborhood defined by the horizon.

In the Lagrangian formalism, the governing heat conduction equation corresponds to the Euler–Lagrange equation. The
Euler–Lagrange equation based on the Lagrangian, L is given in the following form [20]

d

dt
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∂L
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)
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∂Θ
= 0, (1a)

with



Download English Version:

https://daneshyari.com/en/article/520281

Download Persian Version:

https://daneshyari.com/article/520281

Daneshyari.com

https://daneshyari.com/en/article/520281
https://daneshyari.com/article/520281
https://daneshyari.com

