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A highly efficient program of massively parallel calculations for electron dynamics has been
developed in an effort to apply the method to optical response of nanostructures of more
than ten-nanometers in size. The approach is based on time-dependent density functional
theory calculations in real-time and real-space. The computational code is implemented
by using simple algorithms with a finite-difference method in space derivative and
Taylor expansion in time-propagation. Since the computational program is free from
the algorithms of eigenvalue problems and fast-Fourier-transformation, which are usually
implemented in conventional quantum chemistry or band structure calculations, it is highly
suitable for massively parallel calculations. Benchmark calculations using the K computer
at RIKEN demonstrate that the parallel efficiency of the program is very high on more
than 60 000 CPU cores. The method is applied to optical response of arrays of C60 orderly
nanostructures of more than 10 nm in size. The computed absorption spectrum is in good
agreement with the experimental observation.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Artificially designed nanostructures in response to light are promising materials for next-generation devices with valuable
functions. For example, plasmon waveguides constructed from arrays of nanoparticles are expected to serve as photonic
devices of energy and quantum data transfer [1]. Nanoparticles are structurally and chemically designed to work as highly
efficient photocatalyst or sensitive chemical and biological sensors [2]. To develop these light-induced functional materials,
understanding optical response, more specifically electron dynamics in nanostructures is essential. Nanostructures with the
size of tens to several tens of nanometers are expected to provide unusual functions due to quantum mechanical finite-size
effects differently from isolated or bulk systems.

Despite this importance, it is highly computationally demanding as matters stand to carry out photoinduced electron
dynamics simulations even in nanostructures with the size of several nanometers. Excited state properties of molecules are
calculated with chemical accuracy by using highly developed quantum chemistry (QC) approaches called post-Hartree–Fock
methods [3]. Unfortunately, applications of such fairly accurate approaches are still limited to very small molecular systems
and thus it is practically impossible to carry out those QC calculations of nanostructures with the size of 1 nm or more.
Instead, as the first-principles calculations for materials relatively larger in size, Kohn–Sham (KS) density functional theory
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(DFT) calculations have so far been preferably used as a standard QC or band structure (BS) approach because of the trade-off
between computational costs and reliability [4–6]. Both methods indeed theoretically predict various kinds of physical or
chemical properties of materials. However, since a set of analytic basis functions of atomic orbitals or plane waves is usually
utilized in these computational methods, the costs of their computations are extremely high with increasing the size of a
target system or a unit cell. This situation becomes much more severe particularly when calculating excited properties of
systems. It is almost impossible in fact to calculate the optical response of nanostructures of more than ten nanometers in
size. Furthermore, the conventional QC and BS methods invoking such a basis set expansion approach are not necessarily
suitable for describing time-dependent phenomena in response to an external field.

An alternative method is a finite-difference (FD) approach in which a KS-DFT equation is directly solved on real space
grids without invoking a basis set expansion. Thus, there is no computational procedure of solving eigenvalue problems
or fast-Fourier-transformation (FFT), which are usually implemented in the conventional QC or BS calculations. This is a
great advantage of the grid-based FD approach when conducting massively parallel calculations. Although the grid-based
FD approach has a long history in the context of solving the Schrödingier equation of simple atomic systems, for example
a hydrogen atom system [7], Chelikowsky et al. developed a practically useful high-oder-FD/DFT approach reliably applied
to materials in combination with a pseudopotential method [8,9]. For the last two decade since then, the FD approach has
been extensively used in calculating electronic structures and also optical response of materials [10–15]. In comparison with
the conventional basis set expansion methods, the FD approach generally requires much more size of memory and is time-
consuming to obtain converged results because the approach is based on a very simple and direct numerical algorithm.
The FD approach is indeed less effective for calculating electronic properties of small molecular systems by utilizing a com-
puter with a single processor or a relatively small number of multi-processors. However, the simple and direct FD algorithm
overwhelms the parallel efficiency of the diagonalization or FFT procedures implemented in the conventional QC and BS
calculations when carrying out massively parallel computations of large scale systems. We should also mention that self-
consistent-field computations using Chebyshev-filtered subspace iteration were proposed in combination with an FD/DFT
approach in real-space [16,17]. In this method, a nonlinear Chebyshev-filtered subspace iteration was adopted to avoid solv-
ing an eigenvalue problem except at the first self-consistent-field (SCF) iteration. The method with parallel computations
is expected to be a powerful approach alternative to the conventional QC and BS calculations involving computationally
demanding the SCF iterations.

We here develop a highly efficient grid-based FD computational program of electron dynamics in real-time and real-space
in an effort to apply the method to optical response of nanostructures at a ten-nanometer scale or more. This is a core
program of “Grid-based Coupled Electron and Electromagnetic field Dynamics (GCEED)” that is currently being developing
in our proposed K computer project. The present computational approach is based on the time-dependent (TD) KS equation.
We aim to develop a numerical program suitable for massively parallel computations in order to efficiently utilize the K
computer at RIKEN. The TDKS equation is numerically solved in a direct manner at three-dimensional Cartesian grid points
by employing an FD formula and the time-propagation is evaluated by the Taylor expansion method. Hybrid parallelization,
MPI and OpenMP, is adopted. Computational efficiency of the method is demonstrated by calculating the optical response
of arrays of C60 with a size of 10 nm and more as sample systems.

Theory is described in the next section. Computational algorithms are described in Section 3. The details of the nanos-
tructures considered are presented in Section 4. The massive parallelizations and their computational performance are
discussed in Section 5 followed by the computational applications to C60 nanostructures in Section 6. Discussion and con-
clusions are given in Section 7.

2. Theory of FD-TDDFT in real-time and real-space

2.1. Time-dependent Kohn–Sham equation

The TDKS equation subject to an external laser field is given by [18,20]
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]
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where m is the electron mass, e is the elementary charge, and ε0 is the permittivity of vacuum. This is the present working
equation. V xc, V ion and V ext are exchange-correlation potential, electron–nuclear interaction potential, and external potential
such as a laser field, respectively. The electron density ρ is given by

ρ(r, t) = 2
N/2∑
p=1
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∣∣2

. (2)

The factor of 2 indicates that each KS orbital is fully occupied (i.e., a closed shell system). To represent the XC potential, we
use the following adiabatic local density approximation (ALDA)

V xc[ρ](r, t) ≈ V LDA
xc [ρ](r, t), (3)
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