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a b s t r a c t

We present new MUSCL techniques associated with cell-centered finite volume method on
triangular meshes. The first reconstruction consists in calculating one vectorial slope per
control volume by a minimization procedure with respect to a prescribed stability condi-
tion. The second technique we propose is based on the computation of three scalar slopes
per triangle (one per edge) still respecting some stability condition. The resulting algorithm
provides a very simple scheme which is extensible to higher dimensional problems.
Numerical approximations have been performed to obtain the convergence order for the
advection scalar problem whereas we treat a nonlinear vectorial example, namely the Euler
system, to show the capacity of the new MUSCL technique to deal with more complex
situations.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Large numerical simulations in industrial framework require efficient but rather simple numerical methods to face the
modelling complexity while making easier the implementation. Flexibility is also required to quickly adapt the computation
code to new conditions and models. High-resolution methods such as ENO, WENO or Discontinuous Galerkin methods pro-
vide very good accuracy. However, the MUSCL technique is more popular in the industrial context due to its natural simplic-
ity and adaptation capacity to respond to modelling evolutions and complexifications.

Monotone Upstream Scheme for Conservation Law technique (MUSCL technique) has been introduced by Van Leer [27]
for one-dimensional hyperbolic problems. The main idea is a piecewise linear reconstruction of the solution to achieve
higher accurate schemes still preserving the stability: the maximum principle or the Total Variation Diminishing (TVD) prop-
erty for instance. Initially elaborated for one-dimensional scalar problems, the MUSCL technique combined with a conserva-
tive scheme had to preserve the Total Variation of the solution. To this end, slopes are limited to prevent spurious oscillations
or overshooting of the numerical approximations [25] and numerous limiters have been proposed [23] in the one-dimen-
sional framework to achieve high-resolution TVD schemes. A first extension of the MUSCL technique to higher dimensions
has been proposed using structured meshes where the MUSCL procedure is applied in each direction [8] but the generaliza-
tion of the Total Variation Diminishing constraint for higher dimensional geometries makes the scheme to be a first-order
method [13]. To get around this negative result, a new class of positive schemes have been introduced [24] which ensures
a local maximum principle. The concept of Local Extremum Diminishing was then developed by Jameson [15] where he gen-
eralizes the notion of incremental scheme with non-negative coefficients for the multi-dimensional situation. For scalar
hyperbolic problem, maximum principle naturally derives from the incremental expression and extensions in the Finite Ele-
ment context have been proposed by Kuzmin and Turek [18].
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An other important point that the reconstruction technique has to address concerns the numerical approximations of
hyperbolic system solutions. For the Euler system, density and pressure have to be non-negative to be physically admissible
and the shallow-water system requires a non-negative height of water. Numerical approximations have to preserve the den-
sity and pressure positivity and specific numerical flux have been designed for this purpose [11]. Extension of the positivity
preservation criteria both for second-order finite volume schemes have been also developed [22].

To handle more flexible refinements and allow discretization of complex bounded domains, new MUSCL methods for
unstructured meshes have been considered based either on the cell-centered representation [16,9,2] or on the vertex cen-
tered representation [5,6]. A linear function is constructed on each element using a gradient prediction which should be lim-
ited to prevent oscillations of the numerical solutions [10] (see also [12,19,20] for a mathematical study of the high-order
schemes).

The classical MUSCL technique consists of two steps. First, a predicted gradient is computed for each element of the mesh
using the neighbouring values. Then the gradient is modified to respect some Maximum Principle or Total Variation Dimin-
ishing constraint and provide a vectorial slope on the element. New values are therefore computed on each edge of the ele-
ment using the linear reconstruction. Finally, an approximation of the flux crossing the interface is performed by employing
the two reconstructed values situated on both sides of the edge combined with a monotone numerical flux function. To avoid
the predictor–corrector algorithm and obtain some optimal reconstruction, we propose to build the vectorial slope on each
element by minimizing a convex functional under stability constraints. The idea is to optimize the slope while respecting the
Maximum principle or the Total Variation Diminishing property. We intend in this way to produce the best gradient approx-
imation which respects the stability constraint.

The MUSCL method presented above will be referred to as monoslope method since the reconstructed values are ob-
tained using the same vectorial slope on each element. We also introduce a new class of MUSCL method named multislope
method where we use specific scalar slope for each interface. For a given element, we consider a set of normalized vectors
and we use the neighbouring values to compute the scalar slopes representing an approximation of the directional deriva-
tives. The slopes are modified afterwards to respect some stability constraint and finally, the reconstructed values are com-
puted on each edge using the corrected slopes. The main advantage of the method is that we only deal with one-dimensional
situations and, as we shall show in the following sections, the scalar slopes are very simple to compute even for higher
dimensional geometries.

The remainder of the paper is organized as follows. In Section 2, we introduce the notations we shall use in the sequel to
describe the finite volume process on triangular meshes for two-dimensional geometries and we review some classical MUS-
CL-type methods. In particular, we give a precise description of the Maximum Principle domain and the Total Variation
Diminishing domain that we employ to keep the stability condition. Section 3 is devoted to a new monoslope MUSCL method
while we describe the multislope MUSCL technique in Section 4. Numerical results are presented for the linear advection
problem and the Euler system in Section 5.

2. Second-order monoslope MUSCL method

To illustrate the MUSCL reconstruction, we here introduce the classical advection problem but more complex problems
such as nonlinear vectorial systems can of course be considered.

Let X � R2, be a polygonal open bounded set of R2; T > 0. We denote by Vðt; xÞ a given R2 vectorial valued function de-
fined on Q T ¼ ½0; T� �X. For t 2 ½0; T�, we set

C�ðtÞ ¼ fx 2 @X; Vðt; xÞ � nðxÞ < 0g; CþðtÞ ¼ fx 2 @X; Vðt; xÞ � nðxÞP 0g;

with x ¼ ðx1; x2Þ a generic point of X and n the outwards normal on the boundary @X.
We consider the advection problem: find Uðt; xÞ a real valued function defined on QT such that

@tU þr � ðVUÞ ¼ 0 in �0; T½�X;

Uðt ¼ 0; �Þ ¼ U0ð�Þ in X;

Uðt; �Þ ¼ Ubðt; �Þ in C�ðtÞ; t 2�0; T�;

where U0 and Ub are given functions.
To deal with the numerical approximation, we introduce the following ingredients (see Fig. 1). T h is a discretization of X

with triangles Ki of centroid Bi; i ¼ 1; . . . ;N where N is the number of mesh elements. For a given i; mðiÞ represents the index
set of the common edge elements Kj 2 T h; j 2 mðiÞ where Sij ¼ Kj \ Ki stands for the common edge with midpoint Mij.

We assume furthermore that the mesh satisfies the following hypothesis (see Fig. 2):

ðHÞ
For any Ki 2 T h such that jmðiÞj ¼ 3; point Bi is strictly
inside the convex set defined by the points Bj; j 2 mðiÞ:

�

Remark 1. Hypothesis ðHÞ yields that any two of the three vectors BiBj; j 2 mðiÞ defines a basis of R2. Such a property is
essential to define the monoslope MUSCL method and it is less restrictive than Hypothesis ðHÞ. Nevertheless, the multislope
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