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a b s t r a c t

In Zhang and Shu (2010) [20], Zhang and Shu (2011) [21] and Zhang et al. (in press) [23],
we constructed uniformly high order accurate discontinuous Galerkin (DG) and finite vol-
ume schemes which preserve positivity of density and pressure for the Euler equations of
compressible gas dynamics. In this paper, we present an extension of this framework to
construct positivity-preserving high order essentially non-oscillatory (ENO) and weighted
essentially non-oscillatory (WENO) finite difference schemes for compressible Euler equa-
tions. General equations of state and source terms are also discussed. Numerical tests of the
fifth order finite difference WENO scheme are reported to demonstrate the good behavior
of such schemes.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we are interested in the Euler equations, the one dimensional version for the perfect gas being given by

wt þ fðwÞx ¼ 0; t P 0; x 2 R; ð1:1Þ

w ¼
q
m

E

0B@
1CA; fðwÞ ¼

m

qu2 þ p

ðEþ pÞu

0B@
1CA ð1:2Þ

with

m ¼ qu; E ¼ 1
2
qu2 þ qe; p ¼ ðc� 1Þqe;

where q is the density, u is the velocity, m is the momentum, E is the total energy, p is the pressure, e is the internal energy,
and c > 1 is a constant (c = 1.4 for the air). The speed of sound is given by c ¼

ffiffiffiffiffiffiffiffiffiffiffi
cp=q

p
and the three eigenvalues of the Jaco-

bian f0(w) are u � c, u and u + c.
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In a conservative numerical scheme, the internal energy is obtained by subtracting the kinetic energy from the total en-
ergy, thus the resulting pressure may be negative, for example, for problems in which the dominant energy is kinetic. Neg-
ative density may often emerge in computing blast waves. Physically, the density q and the pressure p should both be
positive. The eigenvalues of the Jacobian will become imaginary if density or pressure is negative so the initial value problem
for the linearized system will be ill-posed. This explains why failure of preserving positivity of density or pressure may cause
blow-ups of the numerical algorithm.

Replacing the negative density or negative pressure by positive ones is neither a conservative cure nor a stable solution.
Therefore, it is highly important to design a conservative positivity-preserving scheme. First order and second order positiv-
ity-preserving schemes were well studied, e.g. [4,11]. A general framework for constructing arbitrarily high order positivity-
preserving discontinuous Galerkin (DG) and finite volume schemes was proposed recently in [20]. This framework can be
easily generalized, for instance, to unstructured meshes [23], and to general equations of state and Euler system with source
terms [21].

Generalization of the positivity-preserving method in [20] to high order finite difference schemes is not straightforward.
However, in some applications where high order schemes are preferred, for example, cosmological simulation [5], finite dif-
ference WENO schemes [10] is more favored than DG schemes [2,3] and the finite volume WENO scheme [12,15] due to their
smaller memory cost (compared to DG) and smaller computational cost (compared both to finite volume schemes and to DG
schemes) for multi-dimensional problems, see for example a comparison in [1] in the context of ENO schemes.

In this paper, we will follow the idea in [20] to construct positivity-preserving high order finite difference WENO schemes.
We will show that by adopting the same simple limiter as in [20], to a slightly different version of finite difference WENO
schemes from the one in [10], the final scheme will keep the positivity of density and pressure without losing conservation. A
conservative positivity-preserving scheme is L1-stable, see [22]. The limiter will not destroy the high order accuracy of the
WENO scheme for smooth solutions without vacuum. All the results also hold for finite difference ENO schemes [16].

The paper is organized as follows. In Section 2, we briefly review the positivity-preserving finite volume schemes in [20]
and the finite difference WENO scheme in [10]. Then we introduce positivity-preserving finite difference schemes in one
space dimension for the perfect gas in Section 3. In Section 4, we discuss a straightforward extension to multi-dimensions,
general equations of state and source terms. In Section 5, numerical tests of the fifth order WENO schemes for some very
demanding problems are shown. Concluding remarks are given in Section 6.

2. Preliminaries

2.1. Review of positivity-preserving high order finite volume WENO schemes

We first briefly review the basic idea in [20,22] for finite volume WENO schemes. Consider the Euler Eq. (1.1) in more
detail. Let pðwÞ ¼ ðc� 1Þ E� 1

2
m2

q

� �
be the pressure function. It can be easily verified that p is a concave function of

w = (q,m,E)T if q > 0. For w1 = (q1,m1,E1)T and w2 = (q2,m2,E2)T, Jensen’s inequality implies, for 0 6 s 6 1,

pðsw1 þ ð1� sÞw2ÞP spðw1Þ þ ð1� sÞpðw2Þ; if q1 > 0; q2 > 0: ð2:1Þ

Define the set of admissible states by

G ¼ w ¼
q
m

E

1CA
0B@

�������q > 0 and p ¼ ðc� 1Þ E� 1
2

m2

q

� �
> 0

8><>:
9>=>;;

then G is a convex set. We want to construct finite volume WENO schemes producing solutions in the set G. Notice that the
condition p > 0 in the definition of set G can be changed to p P 0 without affecting convexity.

The time discretization is chosen as the high order strong stability preserving (SSP) methods [14,16,8,9] which are convex
combinations of Euler forward. Thus we only need to discuss the Euler forward since G is convex.

A general high order finite volume scheme has the following form

�wnþ1
i ¼ �wn

i � k f̂ w�iþ1
2
;wþ

iþ1
2

� �
� f̂ w�i�1

2
;wþ

i�1
2

� �h i
; ð2:2Þ

where f̂ is a positivity preserving flux, for instance, Lax–Friedrichs flux, �wn
i is the approximation to the cell average of the

exact solution v(x, t) in the cell Ii ¼ xi�1
2
; xiþ1

2

h i
at time level n, and w�

iþ1
2
;wþ

iþ1
2

are the high order approximations of the point

values v xiþ1
2
; tn

� �
within the cells Ii and Ii+1 respectively. These values are reconstructed from the cell averages �wn

i by the

WENO reconstruction. We assume that there is a polynomial vector qi(x) = (qi(x),mi(x),Ei(x))T with degree k which are
(k + 1)-th order accurate approximations to smooth exact solutions v(x, t) on Ii, and satisfies that �wn

i is the cell average of

qi(x) on Ii;wþi�1
2
¼ qi xi�1

2

� �
and w�

iþ1
2
¼ qi xiþ1

2

� �
. The existence of such polynomials can be established by interpolation for

WENO schemes. For example, for the fifth order WENO scheme, there is a unique vector of polynomials of degree four

qi(x) satisfying qi xi�1
2

� �
¼ wþ

i�1
2
;qi xiþ1

2

� �
¼ w�

iþ1
2

and

2246 X. Zhang, C.-W. Shu / Journal of Computational Physics 231 (2012) 2245–2258



Download English Version:

https://daneshyari.com/en/article/520345

Download Persian Version:

https://daneshyari.com/article/520345

Daneshyari.com

https://daneshyari.com/en/article/520345
https://daneshyari.com/article/520345
https://daneshyari.com

