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a b s t r a c t

In this paper, a series of f(a) kinetic equations able to describe the random scission degradation of
polymers is formulated in such a way that the reaction rate of the thermal degradation of polymers that
go through a random scission mechanism can be directly related to the reacted fraction. The proposed
equations are validated by a study of the thermal degradation of poly(butylene terephthalate) (PBT).
The combined kinetic analysis of thermal degradation curves of this polymer obtained under different
thermal pathways have shown that the proposed equation fits all these curves while other conventional
models used in literature do not.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The ever increasing commercial importance of polymeric
materials has entailed a continuous interest in their thermal
stability. As a consequence, a huge number of papers dealing with
this topic have been published in the last years [1e8]. The kinetic
modelling of the decomposition plays a central role in many of
those studies, being crucial for an accurate prediction of the
materials behaviour under different working conditions [9e18].
A precise prediction requires the knowledge of the so called kinetic
triplet, namely, the activation energy, the pre-exponential factor
and the kinetic model, f(a). This latter parameter, also known as
conversion function, is an algebraic expression that is associated
with the physical model that describes the kinetics of a solid state
reaction [19,20]. Therefore, the kinetic analysis also provides some
understanding of the mechanism of the reaction under study
[19e21]. Knowledge of the mechanism of thermal degradation of
available macromolecules is very helpful in the field of the thermal
stability of polymers [5].

Heating of polymers may produce either a breakage of the
main chain, in the side chain or of the substituent atoms [5].
Random scission is a degradation mechanism often attributed to
the pyrolysis of a wide number of polymers. It assumes a random

cleavage of bonds along the polymer chains, producing fragments
of progressively shorter length that will eventually evaporate when
the size is small enough [22e35]. However, the kinetics models
describing the random scission mechanisms cannot be directly
expressed as a function of the reacted fractionwhat makes difficult
to apply to the kinetic analysis of thermal decomposition data
obtained by TG or DSC. This fact would explain that most of the
works focused on the study of the kinetics of polymer degradation
assume “n-order” kinetic models, without any guarantee that these
empirical conversion functions can actually describe correctly the
polymer degradation mechanism. In the present work, the original
SimhaeWall equation for depolymerisation is reformulated in such
a way that the reaction rate can be directly expressed as a function
of f(a) and the time or the temperature. The proposed equations
will be validated by the study of the thermal degradation of poly
(butylene terephthalate) (PBT), a commonly used commercial
polymer which is widely recognized to decompose by means of
a random scission mechanism [5], but it is yet to be studied using
a random scission model. The analysis will be performed by means
of the combined kinetic analysis method, which allows for the
simultaneous analysis of a set of experimental curves recorded
under any thermal schedule and without any assumption about
the kinetic model followed by the reaction [36e40]. The kinetic
parameters thus obtained are used to reconstruct the original
curves in order to demonstrate that these new f(a) functions can be
used successfully to describe random scission driven reactions,
something that cannot be achieved by the widely used first or
“n-order” kinetic models.
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2. Theoretical background

The reaction rate, da/dt, of a solid state reaction can be described
by the following equation:

da
dt

¼ A expð � E=RTÞf ðaÞ (1)

where A is the Arrhenius pre-exponential factor, R is the gas constant,
E the activation energy, a the reacted fraction, T is the process
temperature and f(a) accounts for the reaction rate dependence on a.
The kinetic model, f(a) is an algebraic expression which is usually
associated with a physical model that describes the kinetics of the
solid state reaction [19]. Table 1 shows the functions corresponding
to the most commonly used mechanisms found in the literature.

Eq. (1) is a general expression that describes the relationship
among the reaction rate, reacted fraction and temperature indepen-
dently of the thermal pathway used for recording the experimental
data. In the case that the experimental data were recorded at
a constant heating rateb¼ dT/dt, Eq. (1) can bewritten as follows [41]:

da
dT

¼ A
b
expð � E=RTÞf ðaÞ (2)

For experiments performed under isothermal conditions, the sample
temperature is rapidly increased up to a certain temperature and
maintained at this temperature, while the reaction evolution is
recorded as a function of the time. Under these experimental
conditions, the term A exp(�E/RT) remains constant at a value k, and
therefore Eq. (1) can be written as follows:

da
dt

¼ kf ðaÞ (3)

Sample controlled thermal analysis (SCTA) is another alternative
approach which is attracting a rising interest for decomposition
reactions [41e43]. In SCTA experiments, the evolution of the reaction
rate with the time is predefined by the user and, most usually, it is
maintained at a constant value along the entire process. In this case,
the technique is named constant rate controlled analysis (CRTA).
This way, by selecting a decomposition rate that is slow enough, the
mass and heat transfer phenomena occurring during the reaction are
minimized, which is an useful asset when dealing with reactions as
complex as polymer pyrolysis. Thus, the results obtained by CRTA are
more representative of the forward reaction than those resulting
from more conventional methods [42,44e46]. Under constant rate

thermal analysis (CRTA) conditions, the reaction rate ismaintained at
a constant value C¼ da/dt selected by the user and Eq. (1) becomes:

C ¼ A expð � E=RTÞf ðaÞ (4)

2.1. Isoconversional analysis

Isoconversional methods (model-free methods) are used for
determining the activation energy as a function of the reacted
fraction without any previous assumption on the kinetic model
fitted by the reaction. The Friedman isoconversional method [47] is
awidely used differential method that, unlike conventional integral
model-free methods, provides accurate values of activation ener-
gies even if the activation were a function of the reacted fraction
[48]. Eq. (1) can be written in logarithmic form:

ln
�
da
dt

�
¼ lnðAf ðaÞÞ � E

RT
(5)

Moreover, at a constant value of a, f(a) would be also constant and
Eq. (5) would be written in the form:

ln
�
da
dt

�
a
¼ Const� E

RTa
(6)

The activation energy Ea can be determined from the slope of the
plot of the left hand side of Eq. (6) against the inverse of the
temperature Ta at constant values of a.

2.2. Combined kinetic analysis

The logarithmic form of the general kinetic Eq. (1) can be
written as follows:

ln
�
da=dt
f ðaÞ

�
¼ ln A� E=RT (7)

The plot of the left hand side of the equation versus the inverse of the
temperature will yield a straight line if the proper f(a) is considered
for the analysis. The activation energy can be calculated from the
slope of such plot, while the intercept leads to the pre-exponential
factor. As no assumption regarding the thermal pathway is made in
Eq. (7), the kinetic parameters obtained should be independent of
the thermal pathway. Thus, this method would allow for the simul-
taneous analysis of any sets of experimental data obtained under
different thermal schedules [37,38]. To overcome the limitation
related to the fact that the f(a) functions were proposed assuming
idealized physical models which may not be necessarily fulfilled in
real systems, a new procedure has been introduced in a recent work,
where the following f(a) general expression was proposed [38]:

f ðaÞ ¼ cð1� aÞnam (8)

This equation is a modified form of the SestakeBerggren empirical
equation [49]. It has been shown that it can fit every function listed in
Table 1 by merely adjusting the parameters c, n and m by means of
the maximize function incorporated in Mathcad software [37,38].
Therefore, Eq. (7)works as an umbrella that covers themost common
physical models and its possible deviations from ideal conditions.
From Eqs. (7) and (8) we reach:

ln
�

da=dt
ð1� aÞnam

�
¼ ln cA� E=RT (9)

This last equation should fit experimental data obtained under any
heating schedule. The Pearson linear correlation coefficient
between the left hand side of the equation and the inverse of the

Table 1
f(a) kinetic functions for the most widely used kinetic models, and including the
random scission models.

Mechanism Symbol f(a)

Phase boundary controlled reaction
(contracting area)

R2 (1 � a)1/2

Phase boundary controlled reaction
(contracting volume)

R3 (1 � a)2/3

Random nucleation followed by an
instantaneous growth of nuclei.
(AvramieErofeev equation n ¼ 1)

F1 (1 � a)

Random nucleation and growth of
nuclei through different nucleation
and nucleus growth models.
(AvramieErofeev equation)

An n(1 � a)[�ln(1 � a)]1 � 1/n

Two-dimensional diffusion D2 (1 � a) ln(1 � a) þ a

Three-dimensional diffusion
(Jander equation)

D3
3ð1� aÞ2=3

2½1� ð1� aÞ1=3�
Three-dimensional diffusion

(GinstlingeBrounshtein equation)
D4 (1 � 2a/3) � (1 � a)2/3

Random scission L ¼ 2 L2 2(a1/2 � a)
Random scission L ¼ 3e8 L3eL8 No symbolic solution
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