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a b s t r a c t

A quartic spline based remapping algorithm is developed and illustrative tests of it are pre-
sented herein. To ensure mass conservation, the scheme solves an integral form of the
transport equation rather than the differential form. The integrals are computed from
reconstructed quartic splines with mass conservation constraints. For higher dimensions,
this remapping can be used within a standard directional splitting methodology or within
the flow-dependent cascade splitting approach. A high-order grid and sub-grid based
monotonic filter is also incorporated into the overall scheme. This filter is independent
of the underlying spline representation adopted here, and is of more general application.

Crown Copyright � 2009 Published by Elsevier Inc. All rights reserved.

1. Introduction

Remapping algorithms, such as the widely used Piecewise Parabolic Method (PPM) [1], are an important component in
many advection schemes for conservative transport. These remappings are also the building blocks of many of the inherently
conserving semi-Lagrangian schemes [2–11].

An alternative to PPM, based on the Parabolic Spline Method (PSM), was presented in [12] and demonstrated in [13] for
two-dimensional conservative transport in Cartesian and spherical geometries. PSM is similar to PPM, but more accurate
(due to its ‘‘best approximation” property), whilst being 60% more efficient [12]. PSM also incorporates a more selective,
and less damping, monotonic filter than that used in the original PPM [1]. PSM achieves monotonicity without (except in
extreme cases) reducing the order of the piecewise polynomial, and it well captures steep gradients and curvature without
recourse to artificial steepening.

The goal of the present paper is to generalise the PSM remapping algorithm to higher order, for increased accuracy. Being
based on a quartic spline, the resulting algorithm is termed the Quartic Spline Method (QSM). Similarly to PSM, QSM also has
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a ‘‘best approximation” property: whereas PSM is optimal within the class of second-order polynomial representations of
density, QSM is optimal within the class of fourth-order ones.

The rest of the paper is organised as follows: Section 2 details the QSM remapping algorithm and its properties; its mono-
tonic filter is described in Section 3; results using the proposed scheme are presented in Section 4 and compared with those
using PSM; and conclusions are summarised in Section 5.

2. The Quartic Spline Method (QSM)

2.1. Problem definition

Consider passive 1D conservative transport of a scalar quantity q governed, in the absence of sources and sinks, by

@q
@t
þ @

@x
ðuqÞ ¼ 0; ð1Þ

where qðx; tÞ is the density (amount of scalar per unit length) of the transported quantity, and uðx; tÞ is the transporting
velocity field. Assume a finite fluid volume bounded by two arbitrary boundaries x1 ¼ x1ðx; tÞ and x2 ¼ x2ðx; tÞ moving with
the fluid, so that

dx1

dt
¼ uðx1; tÞ;

dx2

dt
¼ uðx2; tÞ: ð2Þ

Integrating (1) with respect to x between two arbitrary moving boundaries xL ¼ xLðx; tÞ and xR ¼ xRðx; tÞ, and making use of
Leibniz’ rule, then leads [5] to the classical integral form of the tracer conservation equation

dMðxL; xR; tÞ
dt

� d
dt

Z xRðtÞ

xLðtÞ
qðx; tÞdx

 !
¼ 0: ð3Þ

Eq. (3) simply states that the mass MðxL; xR; tÞ contained between any two boundaries, xLðtÞ and xRðtÞ, that move with the
fluid, is invariant in time, i.e. M is conserved.

Since xLðtÞ and xRðtÞ in (3) are any two points travelling with the fluid, one can consider that these moving boundaries
instantaneously coincide at time tnþ1 with the boundaries of an Eulerian Control Volume (ECV). Their upstream positions
xLðtnÞ and xRðtnÞ at time tn then form the left and right boundaries of the associated upstream Lagrangian Control Volume
(LCV). In other words, since the fluid is a continuum, then the fluid contained in the Lagrangian segment
xd

L ; x
d
R

� �
� ½xLðtnÞ; xRðtnÞ� is completely transported to the Eulerian segment ½xLðtnþ1Þ; xRðtnþ1Þ� (this provides the basis of the

SLICE scheme [2]).
To discretise (3), consider the general case where the computational 1D domain X ¼ ½xmin; xmax� is subdivided into N ECV’s

with (possibly unequal) spacing hi � xiþ1=2 � xi�1=2 ði ¼ 1;2; . . . ;NÞ, where xi�1=2 and xiþ1=2 are respectively the left and right
boundaries of ECVi. For a closed domain, the left boundary is at x ¼ x1=2 and the right boundary at x ¼ xNþ1=2. For a periodic
domain, xNþiþ1=2 � xi�1=2 ði ¼ 0;�1;�2; . . .Þ.

Defining the gridbox-averaged density at time t as

�qiðtÞ �
1
hi

Z xiþ1=2

xi�1=2

qðx; tÞdx � 1
hi

Mðxi�1=2; xiþ1=2; tÞ �
1
hi

Mi; ð4Þ

the time-discretisation of (3) can then be rewritten as

�qnþ1
i � �qiðtnþ1Þ � 1

hi
ðMiÞnþ1 ¼ 1

hi
Md

i

� �n
; ð5Þ

where

Md
i �

Z xd
iþ1=2

xd
i�1=2

qðx; tÞdx: ð6Þ

Here superscript n denotes evaluation at time tn, superscript d denotes association with a departure-point value (as in semi-
Lagrangian schemes [14]), and xd

i�1=2 and xd
iþ1=2 are respectively the left- and right-hand boundaries of LCVi at time tn, deter-

mined from numerical integration of (2) – see e.g. [14].
In general, the shape of qðx; tnÞ is not known a priori, and hence (6) cannot be evaluated. Instead piecewise polynomials

that use the given discrete gridbox-averaged values can be reconstructed. Previous approaches have used either piecewise
constant, piecewise linear [15], piecewise parabolic [1,12] or piecewise cubic [2,8] polynomials. Herein a Quartic Spline
Method is proposed.
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